scholarly journals Spatial modelling of the infestation indices of Aedes aegypti: an innovative strategy for vector control actions in developing countries

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ana Carolina Policarpo Cavalcante ◽  
Ricardo Alves de Olinda ◽  
Alexandrino Gomes ◽  
John Traxler ◽  
Matt Smith ◽  
...  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Betelehem Wondwosen ◽  
Mengistu Dawit ◽  
Yared Debebe ◽  
Habte Tekie ◽  
Sharon R. Hill ◽  
...  

Abstract Background Odour-based tools targeting gravid malaria vectors may complement existing intervention strategies. Anopheles arabiensis are attracted to, and stimulated to oviposit by, natural and synthetic odours of wild and domesticated grasses associated with mosquito breeding sites. While such synthetic odour lures may be used for vector control, these may have limited efficacy when placed in direct competition with the natural source. In this study, workflows developed for plant-feeding pests was used to design and evaluate a chimeric odour blend based on shared attractive compounds found in domesticated grass odours. Methods Variants of a synthetic odour blend, composed of shared bioactive compounds previously identified in domesticated grasses, was evaluated sequentially in a two-choice olfactometer to identify a ratio-optimized attractive blend for malaria vectors. During this process, blends with ratios that were significantly more attractive than the previously identified synthetic rice blend were compared to determine which was most attractive in the two-choice olfactometer. To determine whether all volatile components of the most attractive blend were necessary for maximal attraction, subtractive assays were then conducted, in which individual components were removed for the most attractive blend, to define the final composition of the chimeric blend. Binary logistic regression models were used to determine significance in all two-choice assays. The chimeric blend was then assessed under field conditions in malaria endemic villages in Ethiopia, to assess the effect of dose, trap type, and placement relative to ground level. Field data were analyzed both descriptively and using a Welch-corrected t-test. Results A ratio-optimized chimeric blend was identified that significantly attracted gravid An. arabiensis under laboratory conditions. In the field, trap captures of An. arabiensis and Anopheles pharoensis were dependent on the presence of the lure, trap type (CDC, BG Sentinel and Suna traps), placement relevant to ground level, with low release rates generally luring more mosquitoes. Conclusions The workflow designed for the development of chimeric lures provides an innovative strategy to target odour-mediated behaviours. The chimeric lure identified here can be used in existing trapping systems, and be customized to increase sustainability, in line with goals of the Global Vector Control Response Group.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Camila Lorenz ◽  
Marcia C. Castro ◽  
Patricia M. P. Trindade ◽  
Maurício L. Nogueira ◽  
Mariana de Oliveira Lage ◽  
...  

AbstractIdentifying Aedes aegypti breeding hotspots in urban areas is crucial for the design of effective vector control strategies. Remote sensing techniques offer valuable tools for mapping habitat suitability. In this study, we evaluated the association between urban landscape, thermal features, and mosquito infestations. Entomological surveys were conducted between 2016 and 2019 in Vila Toninho, a neighborhood of São José do Rio Preto, São Paulo, Brazil, in which the numbers of adult female Ae. aegypti were recorded monthly and grouped by season for three years. We used data from 2016 to 2018 to build the model and data from summer of 2019 to validate it. WorldView-3 satellite images were used to extract land cover classes, and land surface temperature data were obtained using the Landsat-8 Thermal Infrared Sensor (TIRS). A multilevel negative binomial model was fitted to the data, which showed that the winter season has the greatest influence on decreases in mosquito abundance. Green areas and pavements were negatively associated, and a higher cover of asbestos roofs and exposed soil was positively associated with the presence of adult females. These features are related to socio-economic factors but also provide favorable breeding conditions for mosquitos. The application of remote sensing technologies has significant potential for optimizing vector control strategies, future mosquito suppression, and outbreak prediction.


2020 ◽  
Author(s):  
Thien-An Ha ◽  
Tomás M. León ◽  
Karina Lalangui ◽  
Patricio Ponce ◽  
John M. Marshall ◽  
...  

AbstractBackgroundVector-borne diseases are a major cause of disease burden in Guayaquil, Ecuador, especially arboviruses spread by Aedes aegypti mosquitoes. Understanding which household characteristics and risk factors lead to higher Ae. aegypti densities and consequent disease risk can help inform and optimize vector control programs.MethodsCross-sectional entomological surveys were conducted in Guayaquil between 2013 and 2016, covering household demographics, municipal services, potential breeding containers, presence of Ae. aegypti larvae and pupae, and history of using mosquito control methods. A zero-truncated negative binomial regression model was fitted to data for estimating the household pupal index. An additional model assessed the factors of the most productive breeding sites across all of the households.ResultsOf surveyed households, 610 satisfied inclusion criteria. The final household-level model found that collection of large solid items (e.g., furniture and tires) and rainfall the week of and 2 weeks before collection were negatively correlated with average pupae per container, while bed canopy use, unemployment, container water volume, and the interaction between large solid collection and rainfall 2 weeks before the sampling event were positively correlated. Selection of these variables across other top candidate models with ΔAICc < 1 was robust, with the strongest effects from large solid collection and bed canopy use. The final container-level model explaining the characteristics of breeding sites found that contaminated water is positively correlated with Ae. aegypti pupae counts while breeding sites composed of car parts, furniture, sewerage parts, vases, ceramic material, glass material, metal material, and plastic material were all negatively correlated.ConclusionHaving access to municipal services like bulky item pickup was effective at reducing mosquito proliferation in households. Association of bed canopy use with higher mosquito densities is unexpected, and may be a consequence of large local mosquito populations or due to limited use or effectiveness of other vector control methods. The impact of rainfall on mosquito density is multifaceted, as it may both create new habitat and “wash out” existing habitat. Providing services and social/technical interventions focused on monitoring and eliminating productive breeding sites is important for reducing aquatic-stage mosquito densities in households at risk for Ae. aegypti-transmitted diseases.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3484 ◽  
Author(s):  
Maíra Rosato Silveiral Silvério ◽  
Laila Salmen Espindola ◽  
Norberto Peporine Lopes ◽  
Paulo Cézar Vieira

The mosquito species Aedes aegypti is one of the main vectors of arboviruses, including dengue, Zika and chikungunya. Considering the deficiency or absence of vaccines to prevent these diseases, vector control remains an important strategy. The use of plant natural product-based insecticides constitutes an alternative to chemical insecticides as they are degraded more easily and are less harmful to the environment, not to mention their lower toxicity to non-target insects. This review details plant species and their secondary metabolites that have demonstrated insecticidal properties (ovicidal, larvicidal, pupicidal, adulticidal, repellent and ovipositional effects) against the mosquito, together with their mechanisms of action. In particular, essential oils and some of their chemical constituents such as terpenoids and phenylpropanoids offer distinct advantages. Thiophenes, amides and alkaloids also possess high larvicidal and adulticidal activities, adding to the wealth of plant natural products with potential in vector control applications.


2019 ◽  
Vol 57 (3) ◽  
pp. 830-836
Author(s):  
Aryana Zardkoohi ◽  
David Castañeda ◽  
Juan C Lol ◽  
Carmen Castillo ◽  
Francisco Lopez ◽  
...  

Abstract Aedes aegypti (Linnaeus, 1762) is considered the most important mosquito vector species for several arboviruses (e.g., dengue, chikungunya, Zika) in Costa Rica. The primary strategy for the control and prevention of Aedes-borne diseases relies on insecticide-based vector control. However, the emergence of insecticide resistance in the mosquito populations presents a significant threat to these prevention actions. The characterization of the mechanisms driving the insecticide resistance in Ae. aegypti is vital for decision making in vector control programs. Therefore, we analyzed the voltage-gated sodium channel (VGSC) gene for the presence of the V1016I and F1534C kdr mutations in Ae. aegypti populations from Puntarenas and Limon provinces, Costa Rica. The CDC bottle bioassays showed that both Costa Rican Ae. aegypti populations were resistant to permethrin and deltamethrin. In the case of kdr genotyping, results revealed the co-occurrence of V1016I and F1534C mutations in permethrin and deltamethrin-resistant populations, as well as the fixation of the 1534C allele. A strong association between these mutations and permethrin and deltamethrin resistance was found in Puntarenas. Limon did not show this association; however, our results indicate that the Limon population analyzed is not under the same selective pressure as Puntarenas for the VGSC gene. Therefore, our findings make an urgent call to expand the knowledge about the insecticide resistance status and mechanisms in the Costa Rican populations of Ae. aegypti, which must be a priority to develop an effective resistance management plan.


2019 ◽  
Vol 56 (5) ◽  
pp. 1331-1337
Author(s):  
Fabián Correa-Morales ◽  
Felipe Dzul-Manzanilla ◽  
Wilbert Bibiano-Marín ◽  
José Vadillo-Sánchez ◽  
Anuar Medina-Barreiro ◽  
...  

Abstract A cluster-randomized controlled trial quantified the entomological efficacy of aerial ultra-low volume (AULV) applications of the insecticide chlorpyrifos against Aedes aegypti in Puerto Vallarta, México, during November–October 2017. The trial involved 16 large (1 × 1 km) clusters distributed between treatment-control arms. Primary endpoint was the abundance of Ae. aegypti indoors (total adults, females, and blood-fed females) collected using Prokopack aspirators. After four consecutive weekly cycles of AULV, all adult Ae. aegypti infestation indices were significantly lower in the treatment arm (OR and IRR ≤ 0.28). Efficacy in reducing indoor Ae. aegypti increased with each weekly application cycle from 30 to 73% (total adults), 33 to 76% (females), and 45.5 to 89% (blood-fed females). Entomological indices remained significantly lower in the treatment arm up to 2 wk after the fourth spraying round. Performing AULV spraying can have significant and lasting entomological impact on Ae. aegypti as long as multiple (ideally four) spray cycles are implemented using an effective insecticide.


Sign in / Sign up

Export Citation Format

Share Document