scholarly journals Anti-CD40 antibody KPL-404 inhibits T cell-mediated activation of B cells from healthy donors and autoimmune patients

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
John Marken ◽  
Sujatha Muralidharan ◽  
Natalia V. Giltiay

Abstract Background CD40-CD40L is a key co-stimulatory pathway for B cell activation. As such, its blockade can inhibit pathogenic B cell responses in autoimmune diseases, such as Sjogren’s syndrome (SjS) and systemic lupus erythematosus (SLE). In this study, we examined the in vitro effects of KPL-404, a humanized anti-CD40 monoclonal antibody (Ab), on primary human B cells derived from either healthy donors (HD) or autoimmune patients and compared them to the effects of G28-5, a partially antagonistic anti-CD40 antibody. Methods PBMCs from HD or SjS and SLE patients were cultured in high-density cell cultures in the presence of IgG4 isotype control or anti-CD40 Abs KPL-404 or G28-5. Cells were stimulated with anti-CD3/CD28 cross-linking reagent ImmunoCult (IC) to induce CD40L-CD40-mediated B cell responses. B cell proliferation and activation, measured by dilution of proliferation tracker dye and the upregulation of CD69 and CD86, respectively, were assessed by flow cytometry. Anti-CD40 Ab cell-internalization was examined by imaging flow cytometry. Cytokine release in the PBMC cultures was quantified by bead-based multiplex assay. Results KPL-404 binds to CD40 expressed on different subsets of B cells without inducing cell depletion, or B cell proliferation and activation in in vitro culture. Under the same conditions, G28-5 promoted proliferation of and increased CD69 expression on otherwise unstimulated B cells. KPL-404 efficiently blocked the CD40L-CD40-mediated activation of B cells from HD at concentrations between 1 and 10 μg/ml. Treatment with KPL-404 alone did not promote cytokine production and blocked the production of IFNβ in healthy PBMC cultures. KPL-404 efficiently blocked CD40L-CD40-mediated activation of B cells from patients with SjS and SLE, without affecting their anti-IgM responses or affecting their cytokine production. Consistent with the differences of their effects on B cell responses, KPL-404 was not internalized by cells, whereas G28-5 showed partial internalization upon CD40 binding. Conclusions Anti-CD40 mAb KPL-404 showed purely antagonistic effects on B cells and total PBMCs. KPL-404 inhibited CD40L-CD40-mediated B cell activation in PBMC cultures from both healthy controls and autoimmune patients. These data support the therapeutic potential of CD40 targeting by KPL-404 Ab for inhibiting B cell responses in SjS and SLE.

2012 ◽  
Vol 209 (10) ◽  
pp. 1825-1840 ◽  
Author(s):  
Craig P. Chappell ◽  
Kevin E. Draves ◽  
Natalia V. Giltiay ◽  
Edward A. Clark

Dendritic cells (DCs) are best known for their ability to activate naive T cells, and emerging evidence suggests that distinct DC subsets induce specialized T cell responses. However, little is known concerning the role of DC subsets in the initiation of B cell responses. We report that antigen (Ag) delivery to DC-inhibitory receptor 2 (DCIR2) found on marginal zone (MZ)–associated CD8α− DCs in mice leads to robust class-switched antibody (Ab) responses to a T cell–dependent (TD) Ag. DCIR2+ DCs induced rapid up-regulation of multiple B cell activation markers and changes in chemokine receptor expression, resulting in accumulation of Ag-specific B cells within extrafollicular splenic bridging channels as early as 24 h after immunization. Ag-specific B cells primed by DCIR2+ DCs were remarkably efficient at driving naive CD4 T cell proliferation, yet DCIR2-induced responses failed to form germinal centers or undergo affinity maturation of serum Ab unless toll-like receptor (TLR) 7 or TLR9 agonists were included at the time of immunization. These results demonstrate DCIR2+ DCs have a unique capacity to initiate extrafollicular B cell responses to TD Ag, and thus define a novel division of labor among splenic DC subsets for B cell activation during humoral immune responses.


1982 ◽  
Vol 155 (3) ◽  
pp. 666-680 ◽  
Author(s):  
R H Zubler ◽  
A L Glasebrook

The requirements for different activation signals in the generation of plaque-forming cell (PFC) responses by positively selected B (surface immunoglobulin-positive) cells were analyzed in low-density cultures to minimize the possible effects of contaminating T cells. Using this system, it is demonstrated that not only in T helper cell (TH)-dependent but also in lipopolysaccharide (LPS)-dependent (i.e., so-called T-independent) PFC responses, the resting B cells have to receive at least three different signals: (a) a major histocompatibility complex (MHC)-specific TH signal that can be bypassed by LPS, (b) an antigen signal, and (c) a second TH signal medicated by MHC- and antigen-unspecific helper factor(s) for B cell responses (BHF) that cannot by bypassed by LPS. Specifically, contact of surface immunoglobulin-positive cells with cloned allo-I-A-specific TH or LPS induced a polyclonal PFC response without significant proliferation, whereas contact with BHF alone (obtained as supernatants from different cloned TH, EL-4 thymoma cells, or secondary mixed leukocyte culture cells) had no effect. Only when LPS, antigen, and BHF, or, alternatively, allo-TH (producing themselves BHF) and antigen were present did clonally expanded PFC responses occur. Thus, the data indicate that both an LPS (or specific TH) signal and an antigen signal are required to render the B cells responsive to BHF. BHF seems to act essentially as a nonspecific growth factor, whereas differentiation into antibody-secreting cells appears to be a preprogrammed consequence of B cell activation by an LPS or specific TH signal.


2017 ◽  
Vol 91 (8) ◽  
Author(s):  
Shannon L. Haley ◽  
Evgeni P. Tzvetkov ◽  
Samantha Meuwissen ◽  
Joseph R. Plummer ◽  
James P. McGettigan

ABSTRACT Vaccine-induced B cells differentiate along two pathways. The follicular pathway gives rise to germinal centers (GCs) that can take weeks to fully develop. The extrafollicular pathway gives rise to short-lived plasma cells (PCs) that can rapidly secrete protective antibodies within days of vaccination. Rabies virus (RABV) postexposure prophylaxis (PEP) requires rapid vaccine-induced humoral immunity for protection. Therefore, we hypothesized that targeting extrafollicular B cell responses for activation would improve the speed and magnitude of RABV PEP. To test this hypothesis, we constructed, recovered, and characterized a recombinant RABV-based vaccine expressing murine B cell activating factor (BAFF) (rRABV-mBAFF). BAFF is an ideal molecule to improve early pathways of B cell activation, as it links innate and adaptive immunity, promoting potent B cell responses. Indeed, rRABV-mBAFF induced a faster, higher antibody response in mice and enhanced survivorship in PEP settings compared to rRABV. Interestingly, rRABV-mBAFF and rRABV induced equivalent numbers of GC B cells, suggesting that rRABV-mBAFF augmented the extrafollicular B cell pathway. To confirm that rRABV-mBAFF modulated the extrafollicular pathway, we used a signaling lymphocytic activation molecule (SLAM)-associated protein (SAP)-deficient mouse model. In response to antigen, SAP-deficient mice form extrafollicular B cell responses but do not generate GCs. rRABV-mBAFF induced similar anti-RABV antibody responses in SAP-deficient and wild-type mice, demonstrating that BAFF modulated immunity through the extrafollicular and not the GC B cell pathway. Collectively, strategies that manipulate pathways of B cell activation may facilitate the development of a single-dose RABV vaccine that replaces current complicated and costly RABV PEP. IMPORTANCE Effective RABV PEP is currently resource- and cost-prohibitive in regions of the world where RABV is most prevalent. In order to diminish the requirements for rabies immunoglobulin (RIG) and multiple vaccinations for effective prevention of clinical rabies, a more rapidly protective vaccine is needed. This work presents a successful approach to rapidly generate antibody-secreting PCs in response to vaccination by targeting the extrafollicular B cell pathway. We demonstrate that the improved early antibody responses induced by rRABV-mBAFF confer improved protection against RABV in a PEP model. Significantly, activation of the early extrafollicular B cell pathway, such as that demonstrated here, could improve the efficacy of vaccines targeting other pathogens against which rapid protection would decrease morbidity and mortality.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1046.1-1046
Author(s):  
L. Schlicher ◽  
P. Kulig ◽  
M. Murphy ◽  
M. Keller

Background:Cenerimod is a potent, selective, and orally active sphingosine 1-phosphate receptor 1 (S1P1) modulator that is currently being evaluated in a Phase 2b study in patients with systemic lupus erythematosus (SLE) (NCT03742037). S1P1 receptor modulators sequester circulating lymphocytes within lymph nodes, thereby reducing pathogenic autoimmune cells (including B lymphocytes) in the blood stream and in inflamed tissues. Extensive clinical experience has become available for the nonselective S1P receptor modulator fingolimod in relapsing forms of multiple sclerosis, supporting this therapeutic concept for the treatment of autoimmune disorders.Objectives:Although the effect of S1P-receptor modulators in reducing peripheral B cells is well documented1,2, the role of the S1P1 receptor on this cell type is only incompletely understood. In this study, the mode of action of cenerimod on primary human B cells was investigated in a series of in vitro experiments, including S1P1 receptor cell surface expression and chemotaxis towards S1P. Moreover, S1P1 expression following B cell activation in vitro was studied. As glucocorticoids (GC) are frequently used in the treatment of patients with autoimmune disorders including SLE, the potential influence of GC on the mode of action of cenerimod was evaluated.Methods:Primary human B lymphocytes from healthy donors were isolated from whole blood. In one set of experiments, cells were treated with different concentrations of cenerimod to measure S1P1 receptor internalization by flow cytometry. In a second set of experiments, isolated B cells were activated using different stimuli or left untreated. Cells were then analysed for S1P1 and CD69 cell surface expression and tested in a novel real-time S1P-mediated migration assay. In addition, the effect of physiological concentrations of GCs (prednisolone and prednisone) on cenerimod activity in preventing S1P mediated migration was tested.Results:In vitro, cenerimod led to a dose-dependent internalization of the S1P1 receptor on primary human B lymphocytes. Cenerimod also blocked migration of nonactivated and activated B lymphocytes towards S1P in a concentration-dependent manner, which is in line with the retention of lymphocytes in the lymph node and the reduction of circulating lymphocytes observed in the clinical setting. Upon B cell activation, which was monitored by CD69 upregulation, a simultaneous downregulation of S1P1 expression was detected, leading to less efficient S1P-directed cell migration. Importantly, physiological concentrations of GC did not affect the inhibitory activity of cenerimod on B cell migration.Conclusion:These results show that cenerimod, by modulating S1P1, blocks B lymphocyte migration towards its natural chemoattractant S1P and demonstrate compatibility of cenerimod with GC. These results are consistent with results of comparable experiments done previously using primary human T lymphocytes.References:[1]Nakamura M et al., Mult Scler. 2014 Sep; 20(10):1371-80.[2]Strasser DS et al., RMD Open 2020;6:e001261.Disclosure of Interests:None declared


2018 ◽  
Vol 46 (11) ◽  
pp. 5547-5560 ◽  
Author(s):  
Kuo-Hsuan Hung ◽  
Yong H Woo ◽  
I-Ying Lin ◽  
Chin-Hsiu Liu ◽  
Li-Chieh Wang ◽  
...  

Abstract T follicular helper (Tfh) cell-derived signals promote activation and proliferation of antigen-primed B cells. It remains unclear whether epigenetic regulation is involved in the B cell responses to Tfh cell-derived signals. Here, we demonstrate that Tfh cell-mimicking signals induce the expression of histone demethylases KDM4A and KDM4C, and the concomitant global down-regulation of their substrates, H3K9me3/me2, in B cells. Depletion of KDM4A and KDM4C potentiates B cell activation and proliferation in response to Tfh cell-derived signals. ChIP-seq and de novo motif analysis reveals NF-κB p65 as a binding partner of KDM4A and KDM4C. Their co-targeting to Wdr5, a MLL complex member promoting H3K4 methylation, up-regulates cell cycle inhibitors Cdkn2c and Cdkn3. Thus, Tfh cell-derived signals trigger KDM4A/KDM4C - WDR5 - Cdkn2c/Cdkn3 cascade in vitro, an epigenetic mechanism regulating proper proliferation of activated B cells. This pathway is dysregulated in B cells from systemic lupus erythematosus patients and may represent a pathological link.


2019 ◽  
Vol 12 (571) ◽  
pp. eaao7194 ◽  
Author(s):  
Isabel Wilhelm ◽  
Ella Levit-Zerdoun ◽  
Johanna Jakob ◽  
Sarah Villringer ◽  
Marco Frensch ◽  
...  

Bacterial lectins are typically multivalent and bind noncovalently to specific carbohydrates on host tissues to facilitate bacterial adhesion. Here, we analyzed the effects of two fucose-binding lectins, BambL fromBurkholderia ambifariaand LecB fromPseudomonas aeruginosa, on specific signaling pathways in B cells. We found that these bacterial lectins induced B cell activation, which, in vitro, was dependent on the cell surface expression of the B cell antigen receptor (BCR) and its co-receptor CD19, as well as on spleen tyrosine kinase (Syk) activity. The resulting release of intracellular Ca2+was followed by an increase in the cell surface abundance of the activation marker CD86, augmented cytokine secretion, and subsequent cell death, replicating all of the events that are observed in vitro upon canonical and antigen-mediated B cell activation. Moreover, injection of BambL in mice resulted in a substantial, BCR-independent loss of B cells in the bone marrow with simultaneous, transient enlargement of the spleen (splenomegaly), as well as an increase in the numbers of splenic B cells and myeloid cells. Together, these data suggest that bacterial lectins can initiate polyclonal activation of B cells through their sole capacity to bind to fucose.


Blood ◽  
1997 ◽  
Vol 89 (4) ◽  
pp. 1299-1307 ◽  
Author(s):  
Hideya Igarashi ◽  
Nobuo Sakaguchi

Abstract To understand the molecular events for the proliferation of B cells, we studied the induction of telomerase activity in vitro after stimulation to B-cell antigen receptor (BCR) on human peripheral B cells. Although unstimulated purified B cells of tonsils and peripheral blood from healthy volunteers do not express detectable telomerase activity, anti-IgM beads induce telomerase activity in these B cells. Soluble anti-IgM antibody (Ab) alone does not induce telomerase activity, but the second signal, given by either one of the cytokines of interleukin-2 (IL-2), IL-4, and IL-13 or by anti-CD40 monoclonal Ab (MoAb), is effective as the costimulation for the induction of the activity. Stimulation with antiIgM Ab and anti-CD40 MoAb induces telomerase activity in most mature B cells of the tonsils and peripheral blood. The stimuli to both IgM and IgD receptors similarly induce the activity. Induction of telomerase activity is accompanied with the proliferation of B cells, but is not absolutely correlated with the extent of B-cell growth. Phorbol dibutylate (PDB) plus calcium (Ca) ionophore (PDB/Ca), which replace the activation through BCR and the costimulatory molecules, also induce telomerase activity. Moreover, it is suggested that phosphoinositide (PI) 3-kinase plays a role for the induction of telomerase activity in B cells stimulated with anti-IgM Ab and anti-CD40 MoAb. These results suggest that telomerase activity is induced in the B-cell activation of the antigen specific immune response.


2007 ◽  
Vol 81 (22) ◽  
pp. 12525-12534 ◽  
Author(s):  
Anne Woods ◽  
Fanny Monneaux ◽  
Pauline Soulas-Sprauel ◽  
Sylviane Muller ◽  
Thierry Martin ◽  
...  

ABSTRACT The link between infection and autoimmunity is not yet well understood. This study was designed to evaluate if an acute viral infection known to induce type I interferon production, like influenza, can by itself be responsible for the breakdown of immune tolerance and for autoimmunity. We first tested the effects of influenza virus on B cells in vitro. We then infected different transgenic mice expressing human rheumatoid factors (RF) in the absence or in the constitutive presence of the autoantigen (human immunoglobulin G [IgG]) and young lupus-prone mice [(NZB × NZW)F1] with influenza virus and looked for B-cell activation. In vitro, the virus induces B-cell activation through type I interferon production by non-B cells but does not directly stimulate purified B cells. In vivo, both RF and non-RF B cells were activated in an autoantigen-independent manner. This activation was abortive since IgM and IgM-RF production levels were not increased in infected mice compared to uninfected controls, whether or not anti-influenza virus human IgG was detected and even after viral rechallenge. As in RF transgenic mice, acute viral infection of (NZB × NZW)F1 mice induced only an abortive activation of B cells and no increase in autoantibody production compared to uninfected animals. Taken together, these experiments show that virus-induced acute type I interferon production is not able by itself to break down B-cell tolerance in both normal and autoimmune genetic backgrounds.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3382-3382
Author(s):  
Peter Allacher ◽  
Christina Hausl ◽  
Aniko Ginta Pordes ◽  
Rafi Uddin Ahmad ◽  
Hartmut J Ehrlich ◽  
...  

Abstract Memory B cells are essential for maintaining long-term antibody responses. They can persist for years even in the absence of antigen and are rapidly re-stimulated to differentiate into antibody-producing plasma cells when they encounter their specific antigen. Previously we demonstrated that ligands for TLR 7 and 9 amplify the differentiation of FVIII-specific memory B cells into anti-FVIII antibody-producing plasma cells at low concentrations of FVIII and prevent the inhibition of memory-B-cell differentiation at high concentrations of FVIII. The modulation of FVIII-specific memory-B-cell responses by agonists for TLR is highly relevant for the design of new immunotherapeutic approaches in patients with FVIII inhibitors because TLR are activated by a range of different viral and bacterial components. Specifically, TLR 7 is triggered by single-stranded RNA derived from viruses and TLR 9 is triggered by bacterial DNA containing unmethylated CpG motifs. We further explored the modulation of FVIII-specific memory-B-cell responses by agonists for TLRs by studying a broad range of concentrations of CpG DNA, a ligand for TLR 9, both in vitro and in vivo using the murine E17 model of hemophilia A. We used CpG-DNA in concentrations ranging from 0.1 to 10,000 ng/ml to study the modulation of FVIII-specific memory-B-cell responses in vitro and verified the specificity of the effects observed by including a blocking agent for TLR 9 and GpC-DNA, a non-stimulating negative control for CpG DNA. Furthermore, we used doses of CpG DNA ranging from 10 to 50,000 ng per dose to study the modulation of FVIII-specific memory-B-cell responses in vivo. E17 hemophilic mice were treated with a single intravenous dose of 200 ng FVIII to stimulate the generation of FVIII-specific memory B cells and were subsequently treated with another dose of FVIII that was given together with CpG DNA. We analyzed titers of anti-FVIII antibodies in the circulation of these mice one week after the second dose of FVIII. Previously we had shown that a single dose of 200 ng FVIII, given intravenously to E17 hemophilic mice, stimulates the formation of FVIII-specific memory B cells but is not sufficient to induce anti-FVIII antibodies that would be detectable in the circulation. Our results demonstrate a biphasic effect of CpG DNA on the re-stimulation of FVIII-specific memory B cells and their differentiation into antibody-producing plasma cells. Both in vitro and in vivo studies show that CpG DNA at high doses inhibits the re-stimulation and differentiation of FVIII-specific memory B cells. However, CpG DNA at low doses amplifies these processes. Amplification and inhibition of memory-B-cell responses are due to specific interactions of CpG DNA with TLR 9. Both effects are blocked by addition of a blocking agent for TLR 9 in vitro. We conclude that triggering of TLR 9 by bacterial DNA has a substantial influence on FVIII-specific memory-B-cell responses. The consequence of TLR 9 triggering can be inhibitory or stimulatory, depending on the actual concentration of the bacterial DNA. Our findings demonstrate the potential modulatory effects of bacterial infections on the regulation of FVIII inhibitor development.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2578-2578
Author(s):  
Mrinmoy Sanyal ◽  
Rosemary Fernandez ◽  
Shoshana Levy

Abstract CD81 is a component of the CD19/CD21 coreceptor complex in B cells. This tetraspanin molecule was previously shown to enable membrane reorganization in B cells responding to complement-bound antigens. Here we stimulated B cells via their B cell receptor (BCR) and demonstrate that Cd81−/− B cells fluxed higher intracellular free calcium ion along with increased phosphorylation of PLCγ2 and Syk. The stimulated Cd81−/− B cells also proliferated faster and secreted higher amounts of antibodies. Moreover, activation of the TLR4 pathway in Cd81−/− B cells induced increased proliferation and antibody secretion. Furthermore, Cd81−/− mice mounted a significantly higher immune response to T-cell independent antigens than their wildtype counterparts. Finally, analysis of Cd81−/− B cells that were generated by bone marrow transplantation into Rag1−/− mice confirmed a cell intrinsic hyperactive phenotype. Taken together, these results indicate that CD81 plays a negative role in B cell activation in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document