scholarly journals Comparative genomic analysis of Klebsiella pneumoniae subsp. pneumoniae KP617 and PittNDM01, NUHL24835, and ATCC BAA-2146 reveals unique evolutionary history of this strain

Gut Pathogens ◽  
2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Taesoo Kwon ◽  
Young-Hee Jung ◽  
Sanghyun Lee ◽  
Mi-ran Yun ◽  
Won Kim ◽  
...  
mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Liangzhi Li ◽  
Zhenghua Liu ◽  
Min Zhang ◽  
Delong Meng ◽  
Xueduan Liu ◽  
...  

ABSTRACT Here, we report three new Acidiphilium genomes, reclassified existing Acidiphilium species, and performed the first comparative genomic analysis on Acidiphilium in an attempt to address the metabolic potential, ecological functions, and evolutionary history of the genus Acidiphilium. In the genomes of Acidiphilium, we found an abundant repertoire of horizontally transferred genes (HTGs) contributing to environmental adaption and metabolic expansion, including genes conferring photosynthesis (puf, puh), CO2 assimilation (rbc), capacity for methane metabolism (mmo, mdh, frm), nitrogen source utilization (nar, cyn, hmp), sulfur compound utilization (sox, psr, sqr), and multiple metal and osmotic stress resistance capacities (czc, cop, ect). Additionally, the predicted donors of horizontal gene transfer were present in a cooccurrence network of Acidiphilium. Genome-scale positive selection analysis revealed that 15 genes contained adaptive mutations, most of which were multifunctional and played critical roles in the survival of extreme conditions. We proposed that Acidiphilium originated in mild conditions and adapted to extreme environments such as acidic mineral sites after the acquisition of many essential functions. IMPORTANCE Extremophiles, organisms that thrive in extreme environments, are key models for research on biological adaption. They can provide hints for the origin and evolution of life, as well as improve the understanding of biogeochemical cycling of elements. Extremely acidophilic bacteria such as Acidiphilium are widespread in acid mine drainage (AMD) systems, but the metabolic potential, ecological functions, and evolutionary history of this genus are still ambiguous. Here, we sequenced the genomes of three new Acidiphilium strains and performed comparative genomic analysis on this extremely acidophilic bacterial genus. We found in the genomes of Acidiphilium an abundant repertoire of horizontally transferred genes (HTGs) contributing to environmental adaption and metabolic ability expansion, as indicated by phylogenetic reconstruction and gene context comparison. This study has advanced our understanding of microbial evolution and biogeochemical cycling in extreme niches.


2018 ◽  
Vol 85 (2) ◽  
Author(s):  
Liangzhi Li ◽  
Zhenghua Liu ◽  
Delong Meng ◽  
Xueduan Liu ◽  
Xing Li ◽  
...  

ABSTRACTMembers of the genusAcidithiobacillus, which can adapt to extremely high concentrations of heavy metals, are universally found at acid mine drainage (AMD) sites. Here, we performed a comparative genomic analysis of 37 strains within the genusAcidithiobacillusto answer the untouched questions as to the mechanisms and the evolutionary history of metal resistance genes inAcidithiobacillusspp. The results showed that the evolutionary history of metal resistance genes inAcidithiobacillusspp. involved a combination of gene gains and losses, horizontal gene transfer (HGT), and gene duplication. Phylogenetic analyses revealed that metal resistance genes inAcidithiobacillusspp. were acquired by early HGT events from species that shared habitats withAcidithiobacillusspp., such asAcidihalobacter,Thiobacillus,Acidiferrobacter, andThiomonasspecies. Multicopper oxidase genes involved in copper detoxification were lost in iron-oxidizingAcidithiobacillus ferridurans,Acidithiobacillus ferrivorans, andAcidithiobacillus ferrooxidansand were replaced by rusticyanin genes during evolution. In addition, widespread purifying selection and the predicted high expression levels emphasized the indispensable roles of metal resistance genes in the ability ofAcidithiobacillusspp. to adapt to harsh environments. Altogether, the results suggested thatAcidithiobacillusspp. recruited and consolidated additional novel functionalities during the adaption to challenging environments via HGT, gene duplication, and purifying selection. This study sheds light on the distribution, organization, functionality, and complex evolutionary history of metal resistance genes inAcidithiobacillusspp.IMPORTANCEHorizontal gene transfer (HGT), natural selection, and gene duplication are three main engines that drive the adaptive evolution of microbial genomes. Previous studies indicated that HGT was a main adaptive mechanism in acidophiles to cope with heavy-metal-rich environments. However, evidences of HGT inAcidithiobacillusspecies in response to challenging metal-rich environments and the mechanisms addressing how metal resistance genes originated and evolved inAcidithiobacillusare still lacking. The findings of this study revealed a fascinating phenomenon of putative cross-phylum HGT, suggesting thatAcidithiobacillusspp. recruited and consolidated additional novel functionalities during the adaption to challenging environments via HGT, gene duplication, and purifying selection. Altogether, the insights gained in this study have improved our understanding of the metal resistance strategies ofAcidithiobacillusspp.


2017 ◽  
Author(s):  
Alejandro Palomo ◽  
Anders G Pedersen ◽  
S Jane Fowler ◽  
Arnaud Dechesne ◽  
Thomas Sicheritz-Pontén ◽  
...  

AbstractThe description of comammoxNitrospiraspp., performing complete ammonium-to-nitrate oxidation, and their co-occurrence with canonical betaproteobacterial ammonium oxidizing bacteria (β-AOB) in the environment, call into question the metabolic potential of comammoxNitrospiraand the evolutionary history of their ammonium oxidation pathway. We report four new comammoxNitrospiragenomes, constituting two novel species, and the first comparative genomic analysis on comammoxNitrospira.ComammoxNitrospirahas lost the potential to use external nitrite as energy and nitrogen source: compared to strictly nitrite oxidizingNitrospira; they lack genes for assimilative nitrite reduction and reverse electron transport from nitrite. By contrast, compared to otherNitrospira, their ammonium oxidizer physiology is exemplified by genes for ammonium and urea transporters and copper homeostasis and the lack of cyanate hydratase genes. Two comammox clades are different in their ammonium uptake systems. Contrary to β-AOB, comammoxNitrospiragenomes have single copies of the two central ammonium oxidation pathway genes, lack genes involved in nitric oxide reduction, and encode genes that would allow efficient growth at low oxygen concentrations. Hence, comammoxNitrospiraseems attuned to oligotrophy and hypoxia compared to β-AOB.β-AOBs are the clear origin of the ammonium oxidation pathway in comammoxNitrospira: reconciliation analysis indicates two separate earlyamoAgene transfer events from β-AOB to an ancestor of comammoxNitrospira, followed by clade specific losses. ForhaoA, one early transfer from β-AOB to comammoxNitrospirais predicted – followed by intra-clade transfers. We postulate that the absence of comammox genes in mostNitrospiragenomes is the result of subsequent loss.SignificanceThe recent discovery of comammox bacteria - members of theNitrospiragenus able to fully oxidize ammonia to nitrate - upset the long-held conviction that nitrification is a two-step process. It also opened key questions on the ecological and evolutionary relations of these bacteria with other nitrifying prokaryotes. Here, we report the first comparative genomic analysis of comammoxNitrospiraand related nitrifiers. Ammonium oxidation genes in comammoxNitrospirahad a surprisingly complex evolution, originating from ancient transfer from the phylogenetically distantly related ammonia-oxidizing betaproteobacteria, followed by within-lineage transfers and losses. The resulting comammox genomes are uniquely adapted to ammonia oxidation in nutrient-limited and low-oxygen environments and appear to have lost the genetic potential to grow by nitrite oxidation alone.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xueya Zhang ◽  
Qiaoling Li ◽  
Hailong Lin ◽  
Wangxiao Zhou ◽  
Changrui Qian ◽  
...  

Aminoglycosides are important options for treating life-threatening infections. However, high levels of aminoglycoside resistance (HLAR) among Klebsiella pneumoniae isolates have been observed to be increasing frequently. In this study, a total of 292 isolates of the K. pneumoniae complex from a teaching hospital in China were analyzed. Among these isolates, the percentage of HLAR strains was 13.7% (40/292), and 15 aminoglycoside resistance genes were identified among the HLAR strains, with rmtB being the most dominant resistance gene (70%, 28/40). We also described an armA-carrying Klebsiella variicola strain KP2757 that exhibited a high-level resistance to all aminoglycosides tested. Whole-genome sequencing of KP2757 demonstrated that the strain contained one chromosome and three plasmids, with all the aminoglycoside resistance genes (including two copies of armA and six AME genes) being located on a conjugative plasmid, p2757-346, belonging to type IncHI5. Comparative genomic analysis of eight IncHI5 plasmids showed that six of them carried two copies of the intact armA gene in the complete or truncated Tn1548 transposon. To the best of our knowledge, for the first time, we observed that two copies of armA together with six AME genes coexisted on the same plasmid in a strain of K. variicola with HLAR. Comparative genomic analysis of eight armA-carrying IncHI5 plasmids isolated from humans and sediment was performed, suggesting the potential for dissemination of these plasmids among bacteria from different sources. These results demonstrated the necessity of monitoring the prevalence of IncHI5 plasmids to restrict their worldwide dissemination.


2007 ◽  
Vol 51 (8) ◽  
pp. 3004-3007 ◽  
Author(s):  
Ying-Tsong Chen ◽  
Tsai-Ling Lauderdale ◽  
Tsai-Lien Liao ◽  
Yih-Ru Shiau ◽  
Hung-Yu Shu ◽  
...  

ABSTRACT A 269-kilobase conjugative plasmid, pK29, from a Klebsiella pneumoniae strain was sequenced. The plasmid harbors multiple antimicrobial resistance genes, including those encoding CMY-8 AmpC-type and CTX-M-3 extended-spectrum β-lactamases in the common backbone of IncHI2 plasmids. Mechanisms for dissemination of the resistance genes are highlighted in comparative genomic analyses.


Author(s):  
Ziyi Liu ◽  
Ruifei Chen ◽  
Poshi Xu ◽  
Zhiqiang Wang ◽  
Ruichao Li

The spread of plasmid-mediated carbapenem-resistant clinical isolates is a serious threat to global health. In this study, an emerging NDM-encoding IncHI5-like plasmid from Klebsiella pneumoniae of infant patient origin was characterized, and the plasmid was compared to the available IncHI5-like plasmids to better understand the genetic composition and evolution of this emerging plasmid. Clinical isolate C39 was identified as K. pneumoniae and belonged to the ST37 and KL15 serotype. Whole genome sequencing (WGS) and analysis revealed that it harbored two plasmids, one of which was a large IncHI5-like plasmid pC39-334kb encoding a wide variety of antimicrobial resistance genes clustered in a single multidrug resistance (MDR) region. The blaNDM-1 gene was located on a ΔISAba125-blaNDM-1-bleMBL-trpF-dsbC structure. Comparative genomic analysis showed that it shared a similar backbone with four IncHI5-like plasmids and the IncHI5 plasmid pNDM-1-EC12, and these six plasmids differed from typical IncHI5 plasmids. The replication genes of IncHI5-like plasmids shared 97.06% (repHI5B) and 97.99% (repFIB-like) nucleotide identity with those of IncHI5 plasmids. Given that pNDM-1-EC12 and all IncHI5-like plasmids are closely related genetically, the occurrence of IncHI5-like plasmid is likely associated with the mutation of the replication genes of pNDM-1-EC12-like IncHI5 plasmids. All available IncHI5-like plasmids harbored 262 core genes encoding replication and maintenance functions and carried distinct MDR regions. Furthermore, 80% of them (4/5) were found in K. pneumoniae from Chinese nosocomial settings. To conclude, this study expands our knowledge of the evolution history of IncHI5-like plasmids, and more attention should be paid to track the evolution pathway of them among clinical, animal, and environmental settings.


Author(s):  
Min-Chi Lu ◽  
Ying-Tsong Chen ◽  
Hui-Ling Tang ◽  
Yen-Yi Liu ◽  
Bo-Han Chen ◽  
...  

Abstract Objectives Epidemic spread of OXA-48-producing Klebsiella pneumoniae, mainly mediated by the transmission of a blaOXA-48-carrying plasmid, has threatened global health during the last decade. Since its introduction to Taiwan in 2013, OXA-48 has become the second most common carbapenemase. We described the transmission and evolution of an OXA-producing K. pneumoniae clone in a single hospital. Methods Twenty-two OXA-48 K. pneumoniae were isolated between October 2013 and December 2015. Comparative genomic analysis was performed based on the WGS data generated with Illumina and MinION techniques. Results Seventeen of the 22 OXA-48 K. pneumoniae that belonged to ST11, with the same capsular genotype, KL64, and differed from each other by seven or fewer SNPs, were considered outbreak strains. Eight of the 17 outbreak strains harboured a 65 499 bp blaOXA-48-carrying IncL plasmid (called pOXA48). pOXA48 was absent from the remaining nine strains. Instead, a 24.9 kb blaOXA-48-carrying plasmid fragment was integrated into a prophage region of their chromosomes. Transmission routes of the ST11_KL64 K. pneumoniae sublineages, which carried either pOXA48 or chromosomally integrated blaOXA-48, were reconstructed. Conclusions Clonal expansion of ST11_KL64 sublineages contributed to the nosocomial outbreak of OXA-48 K. pneumoniae. The chromosome-borne blaOXA-48 lineage emerged during a 2 year period in a single hospital. Dissemination of OXA-48, which is vertically transmitted in K. pneumoniae even in the absence of selective pressure from antimicrobials, deserves public health attention.


2016 ◽  
Vol 90 (17) ◽  
pp. 7920-7933 ◽  
Author(s):  
Jennifer A. Dill ◽  
Alvin C. Camus ◽  
John H. Leary ◽  
Francesca Di Giallonardo ◽  
Edward C. Holmes ◽  
...  

ABSTRACTHepadnaviruses (hepatitis B viruses [HBVs]) are the only animal viruses that replicate their DNA by reverse transcription of an RNA intermediate. Until recently, the known host range of hepadnaviruses was limited to mammals and birds. We obtained and analyzed the first amphibian HBV genome, as well as several prototype fish HBVs, which allow the first comprehensive comparative genomic analysis of hepadnaviruses from four classes of vertebrates. Bluegill hepadnavirus (BGHBV) was characterized from in-house viral metagenomic sequencing. The African cichlid hepadnavirus (ACHBV) and the Tibetan frog hepadnavirus (TFHBV) were discovered usingin silicoanalyses of the whole-genome shotgun and transcriptome shotgun assembly databases. Residues in the hydrophobic base of the capsid (core) proteins, designated motifs I, II, and III, are highly conserved, suggesting that structural constraints for proper capsid folding are key to capsid protein evolution. Surface proteins in all vertebrate HBVs contain similar predicted membrane topologies, characterized by three transmembrane domains. Most striking was the fact that BGHBV, ACHBV, and the previously described white sucker hepadnavirus did not form a fish-specific monophyletic group in the phylogenetic analysis of all three hepadnaviral genes. Notably, BGHBV was more closely related to the mammalian hepadnaviruses, indicating that cross-species transmission events have played a major role in viral evolution. Evidence of cross-species transmission was also observed with TFHBV. Hence, these data indicate that the evolutionary history of the hepadnaviruses is more complex than previously realized and combines both virus-host codivergence over millions of years and host species jumping.IMPORTANCEHepadnaviruses are responsible for significant disease in humans (hepatitis B virus) and have been reported from a diverse range of vertebrates as both exogenous and endogenous viruses. We report the full-length genome of a novel hepadnavirus from a fish and the first hepadnavirus genome from an amphibian. The novel fish hepadnavirus, sampled from bluegills, was more closely related to mammalian hepadnaviruses than to other fish viruses. This phylogenetic pattern reveals that, although hepadnaviruses have likely been associated with vertebrates for hundreds of millions of years, they have also been characterized by species jumping across wide phylogenetic distances.


Sign in / Sign up

Export Citation Format

Share Document