scholarly journals Characterization of a blaNDM-1-Bearing IncHI5-Like Plasmid From Klebsiella pneumoniae of Infant Origin

Author(s):  
Ziyi Liu ◽  
Ruifei Chen ◽  
Poshi Xu ◽  
Zhiqiang Wang ◽  
Ruichao Li

The spread of plasmid-mediated carbapenem-resistant clinical isolates is a serious threat to global health. In this study, an emerging NDM-encoding IncHI5-like plasmid from Klebsiella pneumoniae of infant patient origin was characterized, and the plasmid was compared to the available IncHI5-like plasmids to better understand the genetic composition and evolution of this emerging plasmid. Clinical isolate C39 was identified as K. pneumoniae and belonged to the ST37 and KL15 serotype. Whole genome sequencing (WGS) and analysis revealed that it harbored two plasmids, one of which was a large IncHI5-like plasmid pC39-334kb encoding a wide variety of antimicrobial resistance genes clustered in a single multidrug resistance (MDR) region. The blaNDM-1 gene was located on a ΔISAba125-blaNDM-1-bleMBL-trpF-dsbC structure. Comparative genomic analysis showed that it shared a similar backbone with four IncHI5-like plasmids and the IncHI5 plasmid pNDM-1-EC12, and these six plasmids differed from typical IncHI5 plasmids. The replication genes of IncHI5-like plasmids shared 97.06% (repHI5B) and 97.99% (repFIB-like) nucleotide identity with those of IncHI5 plasmids. Given that pNDM-1-EC12 and all IncHI5-like plasmids are closely related genetically, the occurrence of IncHI5-like plasmid is likely associated with the mutation of the replication genes of pNDM-1-EC12-like IncHI5 plasmids. All available IncHI5-like plasmids harbored 262 core genes encoding replication and maintenance functions and carried distinct MDR regions. Furthermore, 80% of them (4/5) were found in K. pneumoniae from Chinese nosocomial settings. To conclude, this study expands our knowledge of the evolution history of IncHI5-like plasmids, and more attention should be paid to track the evolution pathway of them among clinical, animal, and environmental settings.

2007 ◽  
Vol 51 (8) ◽  
pp. 3004-3007 ◽  
Author(s):  
Ying-Tsong Chen ◽  
Tsai-Ling Lauderdale ◽  
Tsai-Lien Liao ◽  
Yih-Ru Shiau ◽  
Hung-Yu Shu ◽  
...  

ABSTRACT A 269-kilobase conjugative plasmid, pK29, from a Klebsiella pneumoniae strain was sequenced. The plasmid harbors multiple antimicrobial resistance genes, including those encoding CMY-8 AmpC-type and CTX-M-3 extended-spectrum β-lactamases in the common backbone of IncHI2 plasmids. Mechanisms for dissemination of the resistance genes are highlighted in comparative genomic analyses.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Weihua Huang ◽  
Guiqing Wang ◽  
Robert Sebra ◽  
Jian Zhuge ◽  
Changhong Yin ◽  
...  

ABSTRACT The extended-spectrum-β-lactamase (ESBL)- and Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae represent serious and urgent threats to public health. In a retrospective study of multidrug-resistant K. pneumoniae, we identified three clinical isolates, CN1, CR14, and NY9, carrying both bla CTX-M and bla KPC genes. The complete genomes of these three K. pneumoniae isolates were de novo assembled by using both short- and long-read whole-genome sequencing. In CR14 and NY9, bla CTX-M and bla KPC were carried on two different plasmids. In contrast, CN1 had one copy of bla KPC-2 and three copies of bla CTX-M-15 integrated in the chromosome, for which the bla CTX-M-15 genes were linked to an insertion sequence, ISEcp1, whereas the bla KPC-2 gene was in the context of a Tn4401a transposition unit conjugated with a PsP3-like prophage. Intriguingly, downstream of the Tn4401a-bla KPC-2-prophage genomic island, CN1 also carried a clustered regularly interspaced short palindromic repeat (CRISPR)-cas array with four spacers targeting a variety of K. pneumoniae plasmids harboring antimicrobial resistance genes. Comparative genomic analysis revealed that there were two subtypes of type I-E CRISPR-cas in K. pneumoniae strains and suggested that the evolving CRISPR-cas, with its acquired novel spacer, induced the mobilization of antimicrobial resistance genes from plasmids into the chromosome. The integration and dissemination of multiple copies of bla CTX-M and bla KPC from plasmids to chromosome depicts the complex pandemic scenario of multidrug-resistant K. pneumoniae. Additionally, the implications from this study also raise concerns for the application of a CRISPR-cas strategy against antimicrobial resistance.


Author(s):  
Xingbing Wu ◽  
Qingyi Shi ◽  
Shimo Shen ◽  
Chen Huang ◽  
Hongcheng Wu

BackgroundThere is a paucity of studies using clinical characteristics and whole-genome sequencing together to fully identify the risk factors of patients with Klebsiella pneumoniae (KP) bloodstream infection (BSI).MethodsWe retrospectively analyzed the clinical and microbiological characteristics of patients with KP BSI. Isolates were processed using Illumina NGS, and relevant bioinformatics analysis was conducted (multi-locus sequence typing, serotype, phylogenetic reconstruction, detection of antibiotic resistance, and virulence genes). A logistic regression model was used to evaluate the risk factors of hosts and causative KP isolates associated with 30-day mortality in patients infected with KP BSI.ResultsOf the 79 eligible patients, the 30-day mortality rate of patients with KP BSI was 30.4%. Multivariate analysis showed that host-associated factors (increased APACHE II score and septic shock) were strongly associated with increased 30-day mortality. For the pathogenic factors, carriage of iutA (OR, 1.46; 95% CI, 1.11–1.81, p = 0.002) or Kvar_1549 (OR, 1.31; 95% CI, 1.02–1.69, p = 0.043) was an independent risk factor, especially when accompanied by a multidrug-resistant phenotype. In addition, ST11-K64 hypervirulent carbapenem-resistant KP co-harbored acquired blaKPC-2 together with iutA (76.5%, 13/17) and Kvar_1549 (100%, 17/17) genes. Comparative genomic analysis showed that they were clustered together based on a phylogenetic tree, and more virulence genes were observed in the group of ST11-K64 strains compared with ST11-non-K64. The patients infected with ST11-K64 strains were associated with relatively high mortality (47.2%, 7/17).ConclusionThe carriage of iutA and Kvar_1549 was seen to be an independent mortality risk factor in patients with KP BSI. The identification of hypervirulent and carbapenem-resistant KP strains associated with high mortality should prompt surveillance.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Haichen Wang ◽  
Changhang Min ◽  
Jun Li ◽  
Ting Yu ◽  
Yongmei Hu ◽  
...  

Abstract Background Fosfomycin has been proven to be a vital choice to treat infection caused by multidrug resistance bacteria, especially carbapenem-resistant Klebsiella pneumoniae (CRKP). However, fosfomycin resistant cases has been reported gradually. In this study, we reported the fosfomycin-resistant rate in CRKP strains and further revealed the molecular mechanisms in resistance gene dissemination. Results A total of 294 non-duplicated CRKP strains were collected. And 55 fosfomyin-resistant strains were detected, 94.5% of which were clustered to sequence type (ST) 11 by PCR followed up sequencing. PFGE further revealed two major groups and four singletons. The positive rates of genes responsible to fosfomycin and carbapenem resistance were 81.8% (fosA3), 12.7% (fosA5) and 94.5% (blaKPC-2), respectively. Genomic analysis confirmed insertion sequence (IS) 26 was the predominant structure surrounding fosA3. The fosA3 genes in six isolates were located on plasmids which were able to transfer to E. coli J53 recipient cells by means of conjugation. Conclusions Although the resistant rate of CRKP to fosfomycin is relatively low in our area, considering its gene is located on transferrable plasmid and inserted in IS structure, continuous monitoring is still needed.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1025
Author(s):  
Shaohua Zhao ◽  
Cong Li ◽  
Chih-Hao Hsu ◽  
Gregory H. Tyson ◽  
Errol Strain ◽  
...  

Salmonella is a leading cause of bacterial infections in animals and humans. We sequenced a collection of 450 Salmonella strains from diseased animals to better understand the genetic makeup of their virulence and resistance features. The presence of Salmonella pathogenicity islands (SPIs) varied by serotype. S. Enteritidis carried the most SPIs (n = 15), while S. Mbandaka, S. Cerro, S. Meleagridis, and S. Havana carried the least (n = 10). S. Typhimurium, S. Choleraesuis, S. I 4,5,12:i:-, and S. Enteritidis each contained the spv operon on IncFII or IncFII-IncFIB hybrid plasmids. Two S. IIIa carried a spv operon with spvD deletion on the chromosome. Twelve plasmid types including 24 hybrid plasmids were identified. IncA/C was frequently associated with S. Newport (83%) and S. Agona (100%) from bovine, whereas IncFII (100%), IncFIB (100%), and IncQ1 (94%) were seen in S. Choleraesuis from swine. IncX (100%) was detected in all S. Kentucky from chicken. A total of 60 antimicrobial resistance genes (ARGs), four disinfectant resistances genes (DRGs) and 33 heavy metal resistance genes (HMRGs) were identified. The Salmonella strains from sick animals contained various SPIs, resistance genes and plasmid types based on the serotype and source of the isolates. Such complicated genomic structures shed light on the strain characteristics contributing to the severity of disease and treatment failures in Salmonella infections, including those causing illnesses in animals.


2021 ◽  
Vol 9 (2) ◽  
pp. 348
Author(s):  
Florian Tagini ◽  
Trestan Pillonel ◽  
Claire Bertelli ◽  
Katia Jaton ◽  
Gilbert Greub

The Mycobacterium kansasii species comprises six subtypes that were recently classified into six closely related species; Mycobacterium kansasii (formerly M. kansasii subtype 1), Mycobacterium persicum (subtype 2), Mycobacterium pseudokansasii (subtype 3), Mycobacterium ostraviense (subtype 4), Mycobacterium innocens (subtype 5) and Mycobacterium attenuatum (subtype 6). Together with Mycobacterium gastri, they form the M. kansasii complex. M. kansasii is the most frequent and most pathogenic species of the complex. M. persicum is classically associated with diseases in immunosuppressed patients, and the other species are mostly colonizers, and are only very rarely reported in ill patients. Comparative genomics was used to assess the genetic determinants leading to the pathogenicity of members of the M. kansasii complex. The genomes of 51 isolates collected from patients with and without disease were sequenced and compared with 24 publicly available genomes. The pathogenicity of each isolate was determined based on the clinical records or public metadata. A comparative genomic analysis showed that all M. persicum, M. ostraviense, M innocens and M. gastri isolates lacked the ESX-1-associated EspACD locus that is thought to play a crucial role in the pathogenicity of M. tuberculosis and other non-tuberculous mycobacteria. Furthermore, M. kansasii was the only species exhibiting a 25-Kb-large genomic island encoding for 17 type-VII secretion system-associated proteins. Finally, a genome-wide association analysis revealed that two consecutive genes encoding a hemerythrin-like protein and a nitroreductase-like protein were significantly associated with pathogenicity. These two genes may be involved in the resistance to reactive oxygen and nitrogen species, a required mechanism for the intracellular survival of bacteria. Three non-pathogenic M. kansasii lacked these genes likely due to two distinct distributive conjugal transfers (DCTs) between M. attenuatum and M. kansasii, and one DCT between M. persicum and M. kansasii. To our knowledge, this is the first study linking DCT to reduced pathogenicity.


Author(s):  
Fatma Ben Abid ◽  
Clement K. M. Tsui ◽  
Yohei Doi ◽  
Anand Deshmukh ◽  
Christi L. McElheny ◽  
...  

AbstractOne hundred forty-nine carbapenem-resistant Enterobacterales from clinical samples obtained between April 2014 and November 2017 were subjected to whole genome sequencing and multi-locus sequence typing. Klebsiella pneumoniae (81, 54.4%) and Escherichia coli (38, 25.5%) were the most common species. Genes encoding metallo-β-lactamases were detected in 68 (45.8%) isolates, and OXA-48-like enzymes in 60 (40.3%). blaNDM-1 (45; 30.2%) and blaOXA-48 (29; 19.5%) were the most frequent. KPC-encoding genes were identified in 5 (3.6%) isolates. Most common sequence types were E. coli ST410 (8; 21.1%) and ST38 (7; 18.4%), and K. pneumoniae ST147 (13; 16%) and ST231 (7; 8.6%).


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 298
Author(s):  
Despoina Konstantinou ◽  
Rafael V. Popin ◽  
David P. Fewer ◽  
Kaarina Sivonen ◽  
Spyros Gkelis

Sponges form symbiotic relationships with diverse and abundant microbial communities. Cyanobacteria are among the most important members of the microbial communities that are associated with sponges. Here, we performed a genus-wide comparative genomic analysis of the newly described marine benthic cyanobacterial genus Leptothoe (Synechococcales). We obtained draft genomes from Le. kymatousa TAU-MAC 1615 and Le. spongobia TAU-MAC 1115, isolated from marine sponges. We identified five additional Leptothoe genomes, host-associated or free-living, using a phylogenomic approach, and the comparison of all genomes showed that the sponge-associated strains display features of a symbiotic lifestyle. Le. kymatousa and Le. spongobia have undergone genome reduction; they harbored considerably fewer genes encoding for (i) cofactors, vitamins, prosthetic groups, pigments, proteins, and amino acid biosynthesis; (ii) DNA repair; (iii) antioxidant enzymes; and (iv) biosynthesis of capsular and extracellular polysaccharides. They have also lost several genes related to chemotaxis and motility. Eukaryotic-like proteins, such as ankyrin repeats, playing important roles in sponge-symbiont interactions, were identified in sponge-associated Leptothoe genomes. The sponge-associated Leptothoe stains harbored biosynthetic gene clusters encoding novel natural products despite genome reduction. Comparisons of the biosynthetic capacities of Leptothoe with chemically rich cyanobacteria revealed that Leptothoe is another promising marine cyanobacterium for the biosynthesis of novel natural products.


2014 ◽  
Vol 63 (10) ◽  
pp. 1316-1323 ◽  
Author(s):  
Alima Gharout-Sait ◽  
Samer-Ahmed Alsharapy ◽  
Lucien Brasme ◽  
Abdelaziz Touati ◽  
Rachida Kermas ◽  
...  

Ten carbapenem-resistant Enterobacteriaceae (eight Klebsiella pneumoniae isolates and two Enterobacter cloacae) isolates from Yemen were investigated using in vitro antimicrobial susceptibility testing, phenotypic carbapenemase detection, multilocus sequence typing (MLST) and replicon typing. Carbapenemase, extended-spectrum β-lactamase (ESBL) and plasmid-mediated quinolone resistance determinant genes were identified using PCR and sequencing. All of the 10 carbapenem-resistant Enterobacteriaceae were resistant to β-lactams, tobramycin, ciprofloxacin and cotrimoxazole. Imipenem, doripenem and meropenem MICs ranged from 2 to >32 mg l−1 and ertapenem MICs ranged from 6 to >32 mg l−1. All of the K. pneumoniae isolates showed ESBL activity in phenotypic tests. Genes encoding bla NDM were detected in all strains. All K. pneumoniae strains produced CTX-M-15 ESBL and SHV β-lactamases. TEM-1 β-lactamase was detected in seven isolates. Nine isolates were qnr positive including QnrB1, QnrA1 and QnrS1, and six isolates produced AAC-6′-Ib-cr. MLST identified five different sequence types (STs): ST1399, ST147, ST29, ST405 and ST340. Replicon typing showed the presence of IncFII1K plasmids in four transformants. To the best of our knowledge, this is the first report of NDM-1-producing Enterobacteriaceae isolates in Yemen.


Sign in / Sign up

Export Citation Format

Share Document