scholarly journals Endometrial stem/progenitor cells and their roles in immunity, clinical application, and endometriosis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yue Kong ◽  
Yang Shao ◽  
Chunxia Ren ◽  
Gong Yang

AbstractEndometrial stem/progenitor cells have been proved to exist in periodically regenerated female endometrium and can be divided into three categories: endometrial epithelial stem/progenitor cells, CD140b+CD146+ or SUSD2+ endometrial mesenchymal stem cells (eMSCs), and side population cells (SPs). Endometrial stem/progenitor cells in the menstruation blood are defined as menstrual stem cells (MenSCs). Due to their abundant sources, excellent proliferation, and autotransplantation capabilities, MenSCs are ideal candidates for cell-based therapy in regenerative medicine, inflammation, and immune-related diseases. Endometrial stem/progenitor cells also participate in the occurrence and development of endometriosis by entering the pelvic cavity from retrograde menstruation and becoming overreactive under certain conditions to form new glands and stroma through clonal expansion. Additionally, the limited bone marrow mesenchymal stem cells (BMDSCs) in blood circulation can be recruited and infiltrated into the lesion sites, leading to the establishment of deep invasive endometriosis. On the other hand, cell derived from endometriosis may also enter the blood circulation to form circulating endometrial cells (CECs) with stem cell-like properties, and to migrate and implant into distant tissues. In this manuscript, by reviewing the available literature, we outlined the characteristics of endometrial stem/progenitor cells and summarized their roles in immunoregulation, regenerative medicine, and endometriosis, through which to provide some novel therapeutic strategies for reproductive and cancerous diseases.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Naruphong Phunikom ◽  
Nittaya Boonmuen ◽  
Pakpoom Kheolamai ◽  
Kanoknetr Suksen ◽  
Sirikul Manochantr ◽  
...  

Abstract Introduction The in vitro expansion and differentiation of mesenchymal stem cells derived from bone marrow (BM-hMSCs) are considered as potential therapeutic tools for clinical applications in bone tissue engineering and regenerative medicine. However, invasive sampling and reduction in number and proliferative capacity with age are the major limitations of BM-hMSCs. Recently, human placenta-derived MSCs (PL-hMSCs) obtained by a non-invasive procedure have attracted much interest. Attempts to increase the potential of PL-hMSCs would be an important paradigm in regenerative medicine. Herein, we examined the proliferative and osteogenic effect of andrographolide (AP) on PL-hMSCs. Methods Mesenchymal stem cells were isolated from full-term normal human placentas and were characterized before using. Cell cytotoxicity and proliferative effect of AP were examined by MTT and BrdU assay, respectively. The non-toxicity concentrations of AP were further assessed for osteogenic effect determined by alkaline phosphatase (ALP) expression and activity, alizarin red staining, and osteoblast-specific gene expressions. Screening of genes involved in osteogenic differentiation-related pathways modulated by AP was explored by a NanoString nCounter analysis. Results PL-hMSCs generated in this study met the MSC criteria set by the International Society of Cellular Therapy. The non-cytotoxic concentrations of AP on PL-hMSCs are up to 10 μM. The compound increased PL-hMSC proliferation concomitant with increases in Wnt/β-catenin level and activity. It also enhanced osteogenic differentiation in association with osteoblast-specific mRNA expression. Further, AP promoted bone formation and increased bone structural protein level, osteocalcin, in osteoblastic cells. Gene screening analysis showed the upregulation of genes related to Wnt/β-catenin, TGFβ/BMP, SMAD, and FGF signaling pathways. Conclusion We demonstrated, for the first time, the potential role of AP in promoting proliferation, osteogenic differentiation, and osteoblast bone formation of PL-hMSCs. This study suggests that AP may be an effective novel agent for the improvement of PL-hMSCs and stem cell-based therapy for bone regeneration.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 784
Author(s):  
Biswajit Panda ◽  
Yashvi Sharma ◽  
Suchi Gupta ◽  
Sujata Mohanty

Mesenchymal Stem Cells are potent therapeutic candidates in the field of regenerative medicine, owing to their immunomodulatory and differentiation potential. However, several complications come with their translational application like viability, duration, and degree of expansion, long-term storage, and high maintenance cost. Therefore, drawbacks of cell-based therapy can be overcome by a novel therapeutic modality emerging in translational research and application, i.e., exosomes. These small vesicles derived from mesenchymal stem cells are emerging as new avenues in the field of nano-medicine. These nano-vesicles have caught the attention of researchers with their potency as regenerative medicine both in nanotherapeutics and drug delivery systems. In this review, we discuss the current knowledge in the biology and handling of exosomes, with their limitations and future applications. Additionally, we highlight current perspectives that primarily focus on their effect on various diseases and their potential as a drug delivery vehicle.


2019 ◽  
Vol 20 (18) ◽  
pp. 4632 ◽  
Author(s):  
Musiał-Wysocka ◽  
Kot ◽  
Sułkowski ◽  
Majka

In recent years, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic modality in regenerative medicine. They hold great promise for treating civilization-wide diseases, including cardiovascular diseases, such as acute myocardial infarction and critical limb ischemia. MSCs isolated from Wharton’s jelly (WJ-MSCs) may be utilized in both cell-based therapy and vascular graft engineering to restore vascular function, thereby providing therapeutic benefits for patients. The efficacy of WJ-MSCs lies in their multipotent differentiation ability toward vascular smooth muscle cells, endothelial cells and other cell types, as well as their capacity to secrete various trophic factors, which are potent in promoting angiogenesis, inhibiting apoptosis and modulating immunoreaction. Ischemic limb disease is caused by insufficient nutrient and oxygen supplies resulting from damaged peripheral arteries. The lack of nutrients and oxygen causes severe tissue damage in the limb, thereby resulting in severe morbidities and mortality. The therapeutic effects of the conventional treatments are still not sufficient. Cell transplantations in small animal model (mice) are vital for deciphering the mechanisms of MSCs’ action in muscle regeneration. The stimulation of angiogenesis is a promising strategy for the treatment of ischemic limbs, restoring blood supply for the ischemic region. In the present study, we focus on the therapeutic properties of the human WJ-MSCs derived product, Cardio. We investigated the role of CardioCell in promoting angiogenesis and relieving hindlimb ischemia. Our results confirm the healing effect of CardioCell and strongly support the use of the WJ-MSCs in regenerative medicine.


2021 ◽  
Author(s):  
Naruphong Phunikom ◽  
Nittaya Boonmeun ◽  
Kanoknetr Suksen ◽  
Pakpoom Kheolamai ◽  
Sirikul Manochantr ◽  
...  

Abstract IntroductionThe in vitro expansion and differentiation of mesenchymal stem cells derived from bone marrow (BM-hMSCs) are considered as potential therapeutic tools for clinical applications in bone tissue engineering and regenerative medicine. However, invasive sampling and reduction in number and proliferative capacity with age are the major limitations of BM-hMSCs. Recently, human placenta-derived MSCs (PL-hMSCs) obtained by a non-invasive procedure have attracted much interest. Attempts to increase the potential of PL-hMSCs would be an important paradigm in regenerative medicine. Herein, we examined the proliferative and osteogenic effect of andrographolide (AP) on PL-hMSCs. MethodsMesenchymal stem cells were isolated from full-term normal human placentas and were characterized before using. Cell cytotoxicity and proliferative effect of AP were examined by MTT and BrdU assay, respectively. The non-toxicity concentrations of AP were further assessed for osteogenic effect determined by alkaline phosphatase (ALP) expression and activity, alizarin red staining, and osteoblast-specific gene expressions. Screening of genes involved in osteogenic differentiation related pathways modulated by AP were explored by a NanoString nCounter analysis. ResultsPL-hMSCs generated in this study met the MSCs criteria set by the International Society of Cellular Therapy. AP has no cytotoxic effect on PL-hMSCs up to 10 μM. The compound increased PL-hMSCs proliferation concomitant with increases in Wnt/ β-catenin level and activity. It also enhanced osteogenic differentiation in association with osteoblast-specific mRNA expression. Further, AP promoted bone formation and increased bone structural protein level, osteocalcin, in osteoblastic cells. Gene screening analysis showed the upregulation of genes related to Wnt/β-catenin, TGFβ/BMP, SMAD and FGF signaling pathways. ConclusionWe demonstrated, for the first time, the potential role of AP in promoting proliferation, osteogenic differentiation, and osteoblast bone formation of PL-hMSCs. This study suggests that AP may be an effective novel agent for the improvement of PL-hMSCs and stem cell-based therapy for bone regeneration.


2019 ◽  
Vol 14 (4) ◽  
pp. 327-336 ◽  
Author(s):  
Carl R. Harrell ◽  
Marina Gazdic ◽  
Crissy Fellabaum ◽  
Nemanja Jovicic ◽  
Valentin Djonov ◽  
...  

Background: Amniotic Fluid Derived Mesenchymal Stem Cells (AF-MSCs) are adult, fibroblast- like, self-renewable, multipotent stem cells. During the last decade, the therapeutic potential of AF-MSCs, based on their huge differentiation capacity and immunomodulatory characteristics, has been extensively explored in animal models of degenerative and inflammatory diseases. Objective: In order to describe molecular mechanisms responsible for the therapeutic effects of AFMSCs, we summarized current knowledge about phenotype, differentiation potential and immunosuppressive properties of AF-MSCs. Methods: An extensive literature review was carried out in March 2018 across several databases (MEDLINE, EMBASE, Google Scholar), from 1990 to present. Keywords used in the selection were: “amniotic fluid derived mesenchymal stem cells”, “cell-therapy”, “degenerative diseases”, “inflammatory diseases”, “regeneration”, “immunosuppression”. Studies that emphasized molecular and cellular mechanisms responsible for AF-MSC-based therapy were analyzed in this review. Results: AF-MSCs have huge differentiation and immunosuppressive potential. AF-MSCs are capable of generating cells of mesodermal origin (chondrocytes, osteocytes and adipocytes), neural cells, hepatocytes, alveolar epithelial cells, insulin-producing cells, cardiomyocytes and germ cells. AF-MSCs, in juxtacrine or paracrine manner, regulate proliferation, activation and effector function of immune cells. Due to their huge differentiation capacity and immunosuppressive characteristic, transplantation of AFMSCs showed beneficent effects in animal models of degenerative and inflammatory diseases of nervous, respiratory, urogenital, cardiovascular and gastrointestinal system. Conclusion: Considering the fact that amniotic fluid is obtained through routine prenatal diagnosis, with minimal invasive procedure and without ethical concerns, AF-MSCs represents a valuable source for cell-based therapy of organ-specific or systemic degenerative and inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document