scholarly journals Transplantation of mesenchymal stem cells ameliorates systemic lupus erythematosus and upregulates B10 cells through TGF-β1

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wang Chun ◽  
Jilai Tian ◽  
Ying Zhang

Abstract Background Considerable experimental and clinical evidences have proved that human umbilical cord mesenchymal stem cells (UC-MSCs) transplantation was powerful in systemic lupus erythematosus (SLE) treatment. MSCs could upregulate regulatory B cells (Bregs) in the mice model of the other immune disease. However, the regulation of MSCs on Bregs in SLE environment remains unclear. Methods To assess the abilities of UC-MSCs to treat SLE, MSCs were transferred intravenously to 17- to 18-week-old MRL/lpr mice. Four weeks later, mice were sacrificed. Survival rates, anti-dsDNA antibodies and renal histology were evaluated. CD4+ T helper (Th) cell subgroups and interleukin (IL)-10+ Bregs (B10) in the spleen were quantitated by flow cytometry. The changes of transforming growth factor (TGF)-β1, IL-6 and indoleamine 2,3-dioxyenase (IDO) mRNAs expressed by MSCs after co-cultured with B cells were detected using real-time polymerase chain reaction (RT-PCR). MSCs were infected by lentivirus carrying TGF-β1 shRNAs, then MSCs with low expression of TGF-β1 were conducted for co-culture in vitro and transplantation experiments in vivo. Results UC-MSCs transplantation could efficiently downregulate 24 h proteinuria and anti-dsDNA antibodies, correct Treg/Th17/Th1 imbalances and increase the frequency of B10 cells. The expression of TGF-β1 in MSCs was significantly increased after co-culture with B cells. Downregulation of TGF-β1 in MSCs could significantly attenuate the upregulation of B10 by MSCs in vitro and in vivo. Downregulation of TGF-β1 also compromised the immunomodulation effects of MSCs on Th17 and Treg cells and the therapeutic effects of MSC transplantation. Conclusions UC-MSCs could protect against SLE in mice and upregulate IL-10+ Bregs via TGF-β1.

2007 ◽  
Vol 67 (4) ◽  
pp. 450-457 ◽  
Author(s):  
A M Jacobi ◽  
D M Goldenberg ◽  
F Hiepe ◽  
A Radbruch ◽  
G R Burmester ◽  
...  

Objective:B lymphocytes have been implicated in the pathogenesis of lupus and other autoimmune diseases, resulting in the introduction of B cell-directed therapies. Epratuzumab, a humanised anti-CD22 monoclonal antibody, is currently in clinical trials, although its effects on patients’ B cells are not completely understood.Methods:This study analysed the in vivo effect of epratuzumab on peripheral B cell subsets in 12 patients with systemic lupus erythematosus, and also addressed the in vitro effects of the drug by analysing anti-immunoglobulin-induced proliferation of isolated B cells obtained from the peripheral blood of 11 additional patients with lupus and seven normal subjects.Results:Upon treatment, a pronounced reduction of CD27– B cells and CD22 surface expression on CD27– B cells was observed, suggesting that these cells, which mainly comprise naïve and transitional B cells, are preferentially targeted by epratuzumab in vivo. The results of in vitro studies indicate additional regulatory effects of the drug by reducing the enhanced activation and proliferation of anti-immunoglobulin-stimulated lupus B cells after co-incubation with CD40L or CpG. Epratuzumab inhibited the proliferation of B cells from patients with systemic lupus erythematosus but not normal B cells under all culture conditions.Conclusions:Epratuzumab preferentially modulates the exaggerated activation and proliferation of B cells from patients with lupus in contrast to normal subjects, thus suggesting that epratuzumab might offer a new therapeutic option for patients with systemic lupus erythematosus, as enhanced B cell activation is a hallmark of this disease.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 230.2-231
Author(s):  
A. Pappalardo ◽  
E. Wojciechowski ◽  
I. Odriozola ◽  
I. Douchet ◽  
N. Merillon ◽  
...  

Background:Neutrophils have been described as potent antigen-presenting cells able to activate T cells by MHC/TCR interaction and costimulatory molecules in tumor immunity. However, little is known about the direct interaction between neutrophils and CD4 T cells with respect to systemic lupus erythematosus (SLE). We have previously shown that OX40L expressed by monocytes from SLE patients promote the differentiation of naïve and memory cells into IL21 secreting T cells that are able to help B cells1,2.Objectives:In this study, we investigate OX40L expression on neutrophils from SLE patients and contribution of these OX40L+neutrophils in SLE pathogenesis to modulation of the B cell helper role of CD4 T cells.Methods:Surface expression of co-stimulatory molecules (OX40L, ICOSL, GITRL, 4-1BBL) on neutrophils from SLE patients and healthy donors (HD) was measured by flow cytometry (FC). Neutrophils from HD were stimulated with TLR7 or TLR8 agonists and IFNα after 5 hours of culture, OX40L expression was measured by FC and Western Blotting. CD4 T cells were cultured with the stimulated neutrophils for 3 days. At the end of the co-culture, percentages of IL21-expressing T follicular (Tfh) and peripheral helper (Tph) cells measured by FC. These generated T cells were also cultured in the presence of memory B cells. After 5 days of co-culture, plasmablast generation and Ig levels were assessed by FC and ELISA, respectively. Inhibition of OX40-OX40L interaction in vitro was achieved using ISB 830, a novel anti-OX40 mAb currently used in clinical trials.Results:Among the co-stimulatory molecules tested, percentages of OX40L+neutrophils in SLE (n=54) were increased compared to HD (n=25)(mean + SD: HD = 1,34%±1.62 vs SLE = 4,53%±8.1; p=0.29). OX40L expression positively correlated with SLE disease activity score (SLEDAI) (p = 0,04; r = 0,31) and with anti-DNA antibodies (p= 0,04, r = 0,33). Of note, the percentage of OX40L+neutrophils was higher in anti-sm-RNP+patients (n=16, mean= 9%±9.8), compared to anti-sm-RNP-patients (n=27, mean = 1,4%±2.5; p = 0,02). The percentage of OX40L+neutrophils was higher in patients with class III or IV lupus nephritis, and inflammatory infiltrate within the kidney biopsy disclosed OX40L+neutrophils, in close contact with T cells. Neutrophils from HD express OX40L with TLR8 agonist, or IFNα priming followed by TLR7 agonist. When memory CD4 T cells were cultured in the presence of TLR8-stimulated neutrophils, the proportion of IL21-expressing Tfh (CXCR5+PD1+) and Tph (CXCR5-PD1hi) were increased, compared to culture with unstimulated neutrophils. This process was dependent on OX40-OX40L interactions, since in vitro treatment with the anti-OX40 blocking antibody ISB 830, inhibited the differentiation of memory T cells into Tfh and Tph. Both generated Tfh and Tph were able to promote the differentiation of memory B cells into Ig-secreting plasmablasts.Conclusion:Our results disclose an unprecedented phenomenon where cross-talk between TLR7/8-activated neutrophils and CD4 lymphocytes operates through OX40L-OX40 costimulation, and neutrophils promote the differentiation of pro-inflammatory Tfh and Tph, as well as IL21 production. Therefore, OX40L/OX40 should be considered as a potentially therapeutic axis in SLE patients.References:[1]Jacquemin et al. Immunity 2015;[2]Jacquemin et al. JCI Insight 2018Disclosure of Interests:Angela Pappalardo Grant/research support from: Ichnos Sciences, Elodie Wojciechowski: None declared, Itsaso Odriozola: None declared, Isabelle Douchet: None declared, Nathalie Merillon: None declared, Andrea Boizard-Moracchini: None declared, Pierre Duffau: None declared, Estibaliz Lazaro: None declared, Marie-Agnes Doucey Employee of: Ichnos Sciences, Lamine Mbow Employee of: Ichnos Sciences, Christophe Richez Consultant of: Abbvie, Amgen, Mylan, Pfizer, Sandoz and UCB., Patrick Blanco Grant/research support from: Ichnos Sciences


2015 ◽  
Vol 75 (4) ◽  
pp. 739-747 ◽  
Author(s):  
Sarah A Jones ◽  
Andrew E J Toh ◽  
Dragana Odobasic ◽  
Marie-Anne Virginie Oudin ◽  
Qiang Cheng ◽  
...  

ObjectivesSystemic lupus erythematosus (SLE) is a serious multisystem autoimmune disease, mediated by disrupted B cell quiescence and typically treated with glucocorticoids. We studied whether B cells in SLE are regulated by the glucocorticoid-induced leucine zipper (GILZ) protein, an endogenous mediator of anti-inflammatory effects of glucocorticoids.MethodsWe conducted a study of GILZ expression in blood mononuclear cells of patients with SLE, performed in vitro analyses of GILZ function in mouse and human B cells, assessed the contributions of GILZ to autoimmunity in mice, and used the nitrophenol coupled to keyhole limpet haemocyanin model of immunisation in mice.ResultsReduced B cell GILZ was observed in patients with SLE and lupus-prone mice, and impaired induction of GILZ in patients with SLE receiving glucocorticoids was associated with increased disease activity. GILZ was downregulated in naïve B cells upon stimulation in vitro and in germinal centre B cells, which contained less enrichment of H3K4me3 at the GILZ promoter compared with naïve and memory B cells. Mice lacking GILZ spontaneously developed lupus-like autoimmunity, and GILZ deficiency resulted in excessive B cell responses to T-dependent stimulation. Accordingly, loss of GILZ in naïve B cells allowed upregulation of multiple genes that promote the germinal centre B cell phenotype, including lupus susceptibility genes and genes involved in cell survival and proliferation. Finally, treatment of human B cells with a cell-permeable GILZ fusion protein potently suppressed their responsiveness to T-dependent stimuli.ConclusionsOur findings demonstrated that GILZ is a non-redundant regulator of B cell activity, with important potential clinical implications in SLE.


1983 ◽  
Vol 157 (6) ◽  
pp. 2140-2146 ◽  
Author(s):  
O T Preble ◽  
K Rothko ◽  
J H Klippel ◽  
R M Friedman ◽  
M I Johnston

The interferon (IFN)-induced enzyme 2-5A synthetase was elevated in mononuclear cells from both serum IFN-positive and -negative systemic lupus erythematosus (SLE) patients. This suggests that a much higher percentage of patients than previously thought produce endogenous IFN. These results may partly explain findings that mononuclear cells from SLE patients are deficient in IFN production in vitro in response to certain IFN inducers. Although normal lymphocytes can produce an acid-labile alpha IFN after stimulation with C. parvum in vitro, the reason for endogenous production of this unusual alpha IFN by SLE patients remains unknown.


RMD Open ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. e001258
Author(s):  
Thomas Dörner ◽  
Franziska Szelinski ◽  
Andreia C Lino ◽  
Peter E Lipsky

Systemic lupus erythematosus (SLE) is characterised by numerous abnormalities in B lineage cells, including increased CD27++ plasmablasts/plasma cells, atypical CD27-IgD- B cells with increased CD95, spleen tyrosine kinase (Syk)++, CXCR5- and CXCR5+ subsets and anergic CD11c+Tbet+ age-associated B cells. Most findings, together with preclinical lupus models, support the concept of B cell hyperactivity in SLE. However, it remains largely unknown whether these specific B cell subsets have pathogenic consequences and whether they provide relevant therapeutic targets. Recent findings indicate a global distortion of B cell functional capability, in which the entire repertoire of naïve and memory B cells in SLE exhibits an anergic or postactivated (APA) functional phenotype. The APA status of SLE B cells has some similarities to the functional derangement of lupus T cells. APA B cells are characterised by reduced global cytokine production, diminished B cell receptor (BCR) signalling with decreased Syk and Bruton’s tyrosine kinase phosphorylation related to repeated in vivo BCR stimulation as well as hyporesponsiveness to toll-like receptor 9 engagement, but intact CD40 signalling. This APA status was related to constitutive co-localisation of CD22 linked to phosphatase SHP-1 and increased overall protein phosphatase activities. Notably, CD40 co-stimulation could revert this APA status and restore BCR signalling, downregulate protein tyrosine phosphatase transcription and promote B cell proliferation and differentiation. The APA status and their potential rescue by bystander help conveyed through CD40 stimulation not only provides insights into possible mechanisms of escape of autoreactive clones from negative selection but also into novel ways to target B cells therapeutically.


2011 ◽  
Vol 3 (3) ◽  
pp. 200-201 ◽  
Author(s):  
Jacqueline Keyhani ◽  
Ezzatollah Keyhani ◽  
Genevieve Servais ◽  
Jean Duchateau

Sign in / Sign up

Export Citation Format

Share Document