scholarly journals Reply to “Missed opportunities in large scale comparison of QSAR and conformal prediction methods and their applications in drug discovery”

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicolas Bosc ◽  
Francis Atkinson ◽  
Eloy Félix ◽  
Anna Gaulton ◽  
Anne Hersey ◽  
...  

Abstract In response to Krstajic’s letter to the editor concerning our published paper, we here take the opportunity to reply, to re-iterate that no errors in our work were identified, to provide further details, and to re-emphasise the outputs of our study. Moreover, we highlight that all of the data are freely available for the wider scientific community (including the aforementioned correspondent) to undertake follow-on studies and comparisons.

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Damjan Krstajic

Abstract Recently Bosc et al. (J Cheminform 11(1): 4, 2019), published an article describing a case study that directly compares conformal predictions with traditional QSAR methods for large-scale predictions of target-ligand binding. We consider this study to be very important. Unfortunately, we have found several issues in the authors’ approach as well as in the presentation of their findings.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicolas Bosc ◽  
Francis Atkinson ◽  
Eloy Felix ◽  
Anna Gaulton ◽  
Anne Hersey ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ulf Norinder ◽  
Ola Spjuth ◽  
Fredrik Svensson

AbstractConfidence predictors can deliver predictions with the associated confidence required for decision making and can play an important role in drug discovery and toxicity predictions. In this work we investigate a recently introduced version of conformal prediction, synergy conformal prediction, focusing on the predictive performance when applied to bioactivity data. We compare the performance to other variants of conformal predictors for multiple partitioned datasets and demonstrate the utility of synergy conformal predictors for federated learning where data cannot be pooled in one location. Our results show that synergy conformal predictors based on training data randomly sampled with replacement can compete with other conformal setups, while using completely separate training sets often results in worse performance. However, in a federated setup where no method has access to all the data, synergy conformal prediction is shown to give promising results. Based on our study, we conclude that synergy conformal predictors are a valuable addition to the conformal prediction toolbox.


Author(s):  
Christina Schindler ◽  
Hannah Baumann ◽  
Andreas Blum ◽  
Dietrich Böse ◽  
Hans-Peter Buchstaller ◽  
...  

Here we present an evaluation of the binding affinity prediction accuracy of the free energy calculation method FEP+ on internal active drug discovery projects and on a large new public benchmark set.<br>


2019 ◽  
Author(s):  
Kyle Konze ◽  
Pieter Bos ◽  
Markus Dahlgren ◽  
Karl Leswing ◽  
Ivan Tubert-Brohman ◽  
...  

We report a new computational technique, PathFinder, that uses retrosynthetic analysis followed by combinatorial synthesis to generate novel compounds in synthetically accessible chemical space. Coupling PathFinder with active learning and cloud-based free energy calculations allows for large-scale potency predictions of compounds on a timescale that impacts drug discovery. The process is further accelerated by using a combination of population-based statistics and active learning techniques. Using this approach, we rapidly optimized R-groups and core hops for inhibitors of cyclin-dependent kinase 2. We explored greater than 300 thousand ideas and identified 35 ligands with diverse commercially available R-groups and a predicted IC<sub>50</sub> < 100 nM, and four unique cores with a predicted IC<sub>50</sub> < 100 nM. The rapid turnaround time, and scale of chemical exploration, suggests that this is a useful approach to accelerate the discovery of novel chemical matter in drug discovery campaigns.


2019 ◽  
Author(s):  
Kyle Konze ◽  
Pieter Bos ◽  
Markus Dahlgren ◽  
Karl Leswing ◽  
Ivan Tubert-Brohman ◽  
...  

We report a new computational technique, PathFinder, that uses retrosynthetic analysis followed by combinatorial synthesis to generate novel compounds in synthetically accessible chemical space. Coupling PathFinder with active learning and cloud-based free energy calculations allows for large-scale potency predictions of compounds on a timescale that impacts drug discovery. The process is further accelerated by using a combination of population-based statistics and active learning techniques. Using this approach, we rapidly optimized R-groups and core hops for inhibitors of cyclin-dependent kinase 2. We explored greater than 300 thousand ideas and identified 35 ligands with diverse commercially available R-groups and a predicted IC<sub>50</sub> < 100 nM, and four unique cores with a predicted IC<sub>50</sub> < 100 nM. The rapid turnaround time, and scale of chemical exploration, suggests that this is a useful approach to accelerate the discovery of novel chemical matter in drug discovery campaigns.


2019 ◽  
Vol 19 (1) ◽  
pp. 4-16 ◽  
Author(s):  
Qihui Wu ◽  
Hanzhong Ke ◽  
Dongli Li ◽  
Qi Wang ◽  
Jiansong Fang ◽  
...  

Over the past decades, peptide as a therapeutic candidate has received increasing attention in drug discovery, especially for antimicrobial peptides (AMPs), anticancer peptides (ACPs) and antiinflammatory peptides (AIPs). It is considered that the peptides can regulate various complex diseases which are previously untouchable. In recent years, the critical problem of antimicrobial resistance drives the pharmaceutical industry to look for new therapeutic agents. Compared to organic small drugs, peptide- based therapy exhibits high specificity and minimal toxicity. Thus, peptides are widely recruited in the design and discovery of new potent drugs. Currently, large-scale screening of peptide activity with traditional approaches is costly, time-consuming and labor-intensive. Hence, in silico methods, mainly machine learning approaches, for their accuracy and effectiveness, have been introduced to predict the peptide activity. In this review, we document the recent progress in machine learning-based prediction of peptides which will be of great benefit to the discovery of potential active AMPs, ACPs and AIPs.


2021 ◽  
Vol 22 (5) ◽  
pp. 2659
Author(s):  
Gianluca Costamagna ◽  
Giacomo Pietro Comi ◽  
Stefania Corti

In the last decade, different research groups in the academic setting have developed induced pluripotent stem cell-based protocols to generate three-dimensional, multicellular, neural organoids. Their use to model brain biology, early neural development, and human diseases has provided new insights into the pathophysiology of neuropsychiatric and neurological disorders, including microcephaly, autism, Parkinson’s disease, and Alzheimer’s disease. However, the adoption of organoid technology for large-scale drug screening in the industry has been hampered by challenges with reproducibility, scalability, and translatability to human disease. Potential technical solutions to expand their use in drug discovery pipelines include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to create isogenic models, single-cell RNA sequencing to characterize the model at a cellular level, and machine learning to analyze complex data sets. In addition, high-content imaging, automated liquid handling, and standardized assays represent other valuable tools toward this goal. Though several open issues still hamper the full implementation of the organoid technology outside academia, rapid progress in this field will help to prompt its translation toward large-scale drug screening for neurological disorders.


mSystems ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Sylvia Kunakom ◽  
Alessandra S. Eustáquio

ABSTRACT The biosynthetic talent of microorganisms has been harnessed for drug discovery for almost a century. Microbial metabolites not only account for the majority of antibiotics available today, but have also led to anticancer, immunosuppressant, and cholesterol-lowering drugs. Yet, inherent challenges of natural products—including inadequate supply and difficulties with structure diversification—contributed to their deprioritization as a source of pharmaceuticals. In recent years, advances in genome sequencing and synthetic biology spurred a renewed interest in natural products. Bacterial genomes encode an abundance of natural products awaiting discovery. Synthetic biology can facilitate not only discovery and improvements in supply, but also structure diversification. This perspective highlights prior accomplishments in the field of synthetic biology and natural products by the scientific community at large, including research from our laboratory. We also provide our opinion as to where we need to go to continue advancing the field.


Author(s):  
Benedict Irwin ◽  
Thomas Whitehead ◽  
Scott Rowland ◽  
Samar Mahmoud ◽  
Gareth Conduit ◽  
...  

More accurate predictions of the biological properties of chemical compounds would guide the selection and design of new compounds in drug discovery and help to address the enormous cost and low success-rate of pharmaceutical R&D. However this domain presents a significant challenge for AI methods due to the sparsity of compound data and the noise inherent in results from biological experiments. In this paper, we demonstrate how data imputation using deep learning provides substantial improvements over quantitative structure-activity relationship (QSAR) machine learning models that are widely applied in drug discovery. We present the largest-to-date successful application of deep-learning imputation to datasets which are comparable in size to the corporate data repository of a pharmaceutical company (678,994 compounds by 1166 endpoints). We demonstrate this improvement for three areas of practical application linked to distinct use cases; i) target activity data compiled from a range of drug discovery projects, ii) a high value and heterogeneous dataset covering complex absorption, distribution, metabolism and elimination properties and, iii) high throughput screening data, testing the algorithm’s limits on early-stage noisy and very sparse data. Achieving median coefficients of determination, R, of 0.69, 0.36 and 0.43 respectively across these applications, the deep learning imputation method offers an unambiguous improvement over random forest QSAR methods, which achieve median R values of 0.28, 0.19 and 0.23 respectively. We also demonstrate that robust estimates of the uncertainties in the predicted values correlate strongly with the accuracies in prediction, enabling greater confidence in decision-making based on the imputed values.


Sign in / Sign up

Export Citation Format

Share Document