scholarly journals Effects of dietary supplementation of probiotic Enterococcus faecium on growth performance and gut microbiota in weaned piglets

AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chengjun Hu ◽  
Weigang Xing ◽  
Xiaohua Liu ◽  
Xiuzhu Zhang ◽  
Ke Li ◽  
...  
2021 ◽  
Author(s):  
Dingfa Wang ◽  
Luli Zhou ◽  
Hanlin Zhou ◽  
Guanyu Hou

Abstract Background: The effects of dietary supplementation with guava leaf extracts (GE) on growth performance, diarrhea and intestinal barrier function, as well as associated with its modulation of serum and fecal metabolic changes in weaned piglets challenged by enterotoxigenic Escherichia coli (ETEC) were investigated.Method: Fifty weaned piglets (Duroc × Yorkshire × Landrace) from 5 pens (2 piglets per pen) were randomly divided into five groups: blank control group (BC), negative control group (NC), or those supplemented with 50 mg kg-1 (S50), 100 mg kg-1 (S100), or 200 (S200) mg kg-1 diet GE, respectively. On day 4, all piglets (except for BC) were orally challenged with about 1.0 × 109 colony-forming units (CFU) enterotoxigenic ETEC. After 28-day trial, growth performance, diarrhea incidence, intestinal barrier function and metabolomics of serum and fecal were investigated.Results: We demonstrated that dietary supplementation with GE (50-200 mg kg-1) reduced diarrhea incidence of piglets and increased expression of intestinal tight junction proteins (ZO-1, Occludin, Claudin-1) (P < 0.05) and sodium hydrogen exchanger 3 (NHE3) (P < 0.05). Moreover, dietary supplementation with GE (50-200 mg kg-1) upregulated level of tetrahydrofolic acid (THF) and reversed higher level of nicotinamide-adenine dinucleotide phosphate (NADP) caused by ETEC in serum compared with NC group (P < 0.05), and enhanced antioxidant ability of piglets. In addition, dietary addition with GE (100 mg kg-1) reversed the lower level of L-pipecolic acid caused by ETEC in feces compared with NC group (P < 0.05), and decreased oxidative stress response of piglets. Further, there were no differences (P > 0.05) in the final weight, average daily feed intake (ADFI) and F/G among dietary groups during the overall period, and piglets in S50 group has the higher average daily gain (ADG). Conclusion: Dietary supplementation with 50-200 mg kg-1 GE reduced diarrhea incidence of weaned piglets challenged by ETEC and exhibited positive effect on improving intestinal barrier function. Meanwhile, dietary addition with GE organized and redistributed energy resources through similar or dissimilar metabolic pathways, and finally enhanced antioxidant ability of piglets challenged by ETEC.


2019 ◽  
Vol 10 (5) ◽  
pp. 2701-2709 ◽  
Author(s):  
Jie Yin ◽  
Fengna Li ◽  
Xiangfeng Kong ◽  
Chaoyue Wen ◽  
Qiuping Guo ◽  
...  

This study aimed at investigating the effects of dietary xylo-oligosaccharide (XOS) on intestinal functions (i.e., intestinal morphology, tight junctions, gut microbiota and metabolism) and growth performance in weaned piglets.


2020 ◽  
Vol 98 (2) ◽  
Author(s):  
Lanmei Yin ◽  
Jun Li ◽  
Huiru Wang ◽  
Zhenfeng Yi ◽  
Lei Wang ◽  
...  

Abstract Vitamin B6 (VB6), which is an essential functional substance for biosome, plays an irreplaceable role in animal health. However, there are few studies that focus on the correlation between VB6 and intestinal health in weaned piglets. This study was conducted to investigate the effects of VB6 on the growth performance, intestinal morphology, and inflammatory cytokines and amino acid (AA) transporters mRNA expression in weaned piglets that are fed a low crude-protein (CP, 18%) diet. Eighteen crossbred piglets with initial body weights of 7.03 ± 0.17 kg (means ± SEM), weaned at 21-d age, were randomly assigned three diets with 0, 4, and 7 mg/kg VB6 supplementation, respectively. The experimental period lasted 14 days. Our results showed that there were no significant differences in growth performance, diarrhea rate, and biochemical parameters among the three treatments. In the jejunum, dietary VB6 supplementation did not affect the morphology and positive Ki67 counts. Dietary supplementation with 4 mg/kg VB6 decreased the mRNA expression of COX-2, IL-10, and TGF-β (P &lt; 0.05). Dietary supplementation with 7 mg/kg VB6 increased the mRNA expression of SLC7A1, SLC7A6, SLC16A14, and SLC38A5 (P &lt; 0.05) and 4 or 7 mg/kg VB6 decreased SLC36A1 mRNA expression (P &lt; 0.05). In the ileum, VB6 supplementation did not affect positive Ki67 counts but significantly decreased villus area (P &lt; 0.05) and tended to decrease villus height (P = 0.093). Dietary supplementation with 4 mg/kg VB6 had significantly increased the mRNA expression of IL-1β, TNF-α, COX-2, IL-10, and TGF-β (P &lt; 0.05). Dietary supplementation with 4 or 7 mg/kg VB6 had significantly decreased SLC6A20, SLC7A1, SLC7A6, SLC16A14, and SLC38A5 mRNA expression (P &lt; 0.05). These findings suggest that dietary supplementation of VB6 mainly down-regulated inflammatory cytokines and up-regulated AA transporters mRNA expression in jejunum, while up-regulated (4 mg/kg) inflammatory cytokines and down-regulated AA transporters mRNA expression in ileum, which may provide a reference for the intestinal development of weaned piglets that are fed a low-CP diet.


2006 ◽  
Vol 86 (4) ◽  
pp. 511-522 ◽  
Author(s):  
H. Namkung ◽  
J. Gong ◽  
H. Yu ◽  
C. F. M. de Lange

The effect of feeding pharmacological levels of zinc (Zn) and copper (Cu) to newly weaned piglets on growth performance, circulating cytokines levels and gut microbiota was investigated. One hundred eighty piglets [5.90 ± 0.18 kg body weight (BW); six pigs per pen] weaned at 16 to 19 d of age were fed diets containing 3000 ppm additional Zn, 250 ppm additional Cu or a control diet (150 ppm Zn, 15 ppm Cu) for 14 d post-weaning (weeks 1 and 2). Pigs were fed a control diet for an additional 2 wk. Pigs were injected intramuscularly on days 13 and 19 with either 75 μg kg-1 BW of coliform lipopolysaccharide (LPS) or an equivalent amount of saline. Blood samples were collected 3 h after LPS injection to measure plasma levels of cytokines and cortisol. Digesta of ileum and colon were collected from non-challenged pigs on days 14 and 28 to evaluate microbiota using conventional culturing methods and polymerase chain reaction and denaturing gradient gel electrophoresis (PCRDGGE) analysis of the 16S rRNA genes. There were no interactive effects of diet and LPS challenge on growth performance (P > 0.10). Compared with the control, high dietary Zn and Cu increased (P < 0.01) average daily gain (ADG) during weeks 1 (0.125, 0.091 vs. 0.074 kg; P < 0.05) and 2 (0.240, 0.270 vs. 0.155 kg; P < 0.01) only. LPS injection reduced ADG during weeks 2 and 4 (P < 0.01). Dietary treatment did not affect feed efficiency (P > 0.10). Challenging pigs with LPS reduced (P < 0.01) feed efficiency during week 2, but increased (P < 0.05) feed efficiency during week 3. There were no interactive effects between diet and LPS on plasma cytokines levels, except for cortisol (P < 0.05). Plasma levels of cytokines (interleukin-1β, interferon-γ, tumour necrosis factor-α) and cortisol increased (P < 0.01) in pigs challenged with LPS. The high levels of dietary Zn and Cu reduced (P < 0.05) the increases in plasma cortisol level in LPS-challenged pigs at days 9 and 19. There were no differences among the dietary treatments in counts of coliforms and lactobacillus in the digesta from ileum and colon (P > 0.10). PCR-DGGE analysis showed that high levels of dietary Zn and particularly Cu significantly reduced the diversity of ileal microbiota. The effect on microbiota diversity was reversible when dietary Zn and Cu were removed. Enhanced growth performance of the newly weaned piglets fed high dietary Zn and Cu appears mediated via changes in gut microbiota as well as a reduced cortisol response following an immune challenge. Key words: Piglets, zinc, copper, lipopolysaccharide, gut microbiota, cytokines


Sign in / Sign up

Export Citation Format

Share Document