Effect of pharmacological intakes of zinc and copper on growth performance, circulating cytokines and gut microbiota of newly weaned piglets challenged with coliform lipopolysaccharides

2006 ◽  
Vol 86 (4) ◽  
pp. 511-522 ◽  
Author(s):  
H. Namkung ◽  
J. Gong ◽  
H. Yu ◽  
C. F. M. de Lange

The effect of feeding pharmacological levels of zinc (Zn) and copper (Cu) to newly weaned piglets on growth performance, circulating cytokines levels and gut microbiota was investigated. One hundred eighty piglets [5.90 ± 0.18 kg body weight (BW); six pigs per pen] weaned at 16 to 19 d of age were fed diets containing 3000 ppm additional Zn, 250 ppm additional Cu or a control diet (150 ppm Zn, 15 ppm Cu) for 14 d post-weaning (weeks 1 and 2). Pigs were fed a control diet for an additional 2 wk. Pigs were injected intramuscularly on days 13 and 19 with either 75 μg kg-1 BW of coliform lipopolysaccharide (LPS) or an equivalent amount of saline. Blood samples were collected 3 h after LPS injection to measure plasma levels of cytokines and cortisol. Digesta of ileum and colon were collected from non-challenged pigs on days 14 and 28 to evaluate microbiota using conventional culturing methods and polymerase chain reaction and denaturing gradient gel electrophoresis (PCRDGGE) analysis of the 16S rRNA genes. There were no interactive effects of diet and LPS challenge on growth performance (P > 0.10). Compared with the control, high dietary Zn and Cu increased (P < 0.01) average daily gain (ADG) during weeks 1 (0.125, 0.091 vs. 0.074 kg; P < 0.05) and 2 (0.240, 0.270 vs. 0.155 kg; P < 0.01) only. LPS injection reduced ADG during weeks 2 and 4 (P < 0.01). Dietary treatment did not affect feed efficiency (P > 0.10). Challenging pigs with LPS reduced (P < 0.01) feed efficiency during week 2, but increased (P < 0.05) feed efficiency during week 3. There were no interactive effects between diet and LPS on plasma cytokines levels, except for cortisol (P < 0.05). Plasma levels of cytokines (interleukin-1β, interferon-γ, tumour necrosis factor-α) and cortisol increased (P < 0.01) in pigs challenged with LPS. The high levels of dietary Zn and Cu reduced (P < 0.05) the increases in plasma cortisol level in LPS-challenged pigs at days 9 and 19. There were no differences among the dietary treatments in counts of coliforms and lactobacillus in the digesta from ileum and colon (P > 0.10). PCR-DGGE analysis showed that high levels of dietary Zn and particularly Cu significantly reduced the diversity of ileal microbiota. The effect on microbiota diversity was reversible when dietary Zn and Cu were removed. Enhanced growth performance of the newly weaned piglets fed high dietary Zn and Cu appears mediated via changes in gut microbiota as well as a reduced cortisol response following an immune challenge. Key words: Piglets, zinc, copper, lipopolysaccharide, gut microbiota, cytokines

2020 ◽  
Author(s):  
Yueqin Qiu ◽  
Kebiao Li ◽  
Shilong Liu ◽  
Li Wang ◽  
Kaiguo Gao ◽  
...  

Abstract Background: Choline or bile acids has many beneficial roles in physiological function. However, little was known about growth performance, intestinal mucosal function and microbiota-host interactions of weaned piglets in response to choline or bile acids supplementation. This study aimed to investigate the effect of choline and bile acids mixtures (ChB) supplementation on growth performance, intestinal mucosal barrier function, gut microbiota and bacterial metabolites of weaned piglets. One hundred and twenty-eight crossbred (Duroc × Landrace × Large White) weaned piglets (initial body weight: approximately 8 kg; 21 d of age) were randomly allocated to four different dietary treatments(a control diet (Control) and the other three groups were control diet supplemented with 800 mg/kg choline chloride (choline), 500 mg/kg bile acids (bile acids) or 800 mg/kg choline chloride plus 500 mg/kg bile acids (ChB), respectively) and for 28-d feeding trail. Results: ChB significantly increased average daily gain (ADG) and reduced feed/gain (F/G) ratio, associated with elevation of lipase activity and total bile acids level in ileal digesta compared with control diet. Additionally, ChB altered colonic microbiota by increasing the relative abundance of Lactobacillus and Faecalibacterium , and decreasing the relative abundances of unidentified-Clostridiales , Parabacteroides and Unidentified-Ruminococcaceae , when compared with control diet. Meanwhile, ChB increased the butyrate level and decreased the production of bile acid profiles in the colonic digesta. Besides, feeding ChB improved gut immunity, as reflected by increasing the abundance of IL-10 , FXR and mucin2 transcript, while downregulated expression of TLR4 , MyD88 , NF-κBp65 and TNF-α genes in the intestinal mucosa. Quantitative proteomics of jejunal mucosa further showed that ChB regulated the proteins that were related to inflammatory response. Furthermore, the changes in the ADG and genes expression were associated with alteration of gut microbiota composition and their metabolites. Conclusions: Collectively, our findings demonstrated that choline and bile acids mixture may improve the growth performance and intestinal immune response of weaned piglets through alteration of gut microbiota composition and bacterial metabolites, which promoted gut health.


2020 ◽  
Vol 151 (1) ◽  
pp. 20-29
Author(s):  
Yueqin Qiu ◽  
Shilong Liu ◽  
Lei Hou ◽  
Kebiao Li ◽  
Li Wang ◽  
...  

ABSTRACT Background Whether dietary choline and bile acids affect lipid use via gut microbiota is unclear. Objectives This study aimed to investigate the effect of choline and bile acids on growth performance, lipid use, intestinal immunology, gut microbiota, and bacterial metabolites in weaned piglets. Methods A total of 128 weaned piglets [Duroc × (Landrace × Yorkshire), 21-d-old, 8.21 ± 0.20 kg body weight (BW)] were randomly allocated to 4 treatments (8 replicate pens per treatment, each pen containing 2 males and 2 females; n = 32 per treatment) for 28 d. Piglets were fed a control diet (CON) or the CON diet supplemented with 597 mg choline/kg (C), 500 mg bile acids/kg (BA) or both (C + BA) in a 2 × 2 factorial design. Growth performance, intestinal function, gut microbiota, and metabolites were determined. Results Compared with diets without choline, choline supplementation increased BW gain (6.13%), average daily gain (9.45%), gain per feed (8.18%), jejunal lipase activity (60.2%), and duodenal IL10 gene expression (51%), and decreased the mRNA abundance of duodenal TNFA (TNFα) (40.7%) and jejunal toll-like receptor 4 (32.9%) (P &lt; 0.05); additionally, choline increased colonic butyrate (29.1%) and the abundance of Lactobacillus (42.3%), while decreasing the bile acid profile (55.8% to 57.6%) and the abundance of Parabacteroides (75.8%), Bacteroides (80.7%), and unidentified-Ruminococcaceae (32.5%) (P ≤ 0.05). Compared with diets without BA, BA supplementation decreased the mRNA abundance of colonic TNFA (37.4%), NF-κB p65 (42.4%), and myeloid differentiation factor 88 (42.5%) (P ≤ 0.01); BA also increased colonic butyrate (20.9%) and the abundance of Lactobacillus (39.7%) and Faecalibacterium (71.6%) and decreased that of Parabacteroides (67.7%) (P &lt; 0.05). Conclusions Choline supplementation improved growth performance and prevented gut inflammation in weaned piglets by altering gut microbiota and lipid metabolism. BA supplementation suppressed intestinal inflammation with no effect on growth performance, which was associated with changed gut microbiota and metabolites.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yongdi Zeng ◽  
Zirui Wang ◽  
Tiande Zou ◽  
Jun Chen ◽  
Guanhong Li ◽  
...  

This study aimed to investigate the effects of dietary bacteriophage supplementation on growth performance, intestinal morphology, barrier function, and intestinal microbiota of weaned piglets fed antibiotic-free diet. A total of 120 weaned piglets were allotted to four dietary treatments with five pens/treatment and six piglets/pen in a 21-d feeding trial. The control diet was supplemented with 25 mg/kg quinocetone and 11.25 mg/kg aureomycin in the basal diet, while the three treatment diets were supplemented with 200, 400, or 600 mg/kg bacteriophage in the basal diet, respectively. There was no difference for growth performance and all measured indices of serum and intestinal tissues between 200 mg/kg bacteriophage group and the control group with antibiotics (P &gt; 0.05). More importantly, compared with the control diet, dietary 400 mg/kg bacteriophage inclusion increased average daily gain and average daily feed intake, and decreased feed/gain ratio and diarrhea incidence of weaned piglets (P &lt; 0.05). Also, piglets fed 400 mg/kg bacteriophage had elevated villi height (VH) in jejunum and ileum, reduced crypt depth (CD) in jejunum and ileum, and elevated VH/CD ratio in duodenum, jejunum and ileum (P &lt; 0.05). Compared to the control group, piglets fed 400 mg/kg bacteriophage had lower interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and higher interleukin-10 (IL-10) concentration in serum, and higher secretory immunoglobulin A (sIgA), intestinal trefoil factor (ITF), and tumor growth factor-alpha (TGF-α) content in the ileal mucosa (P &lt; 0.05). Besides, dietary addition with 400 mg/kg bacteriophage decreased the D-lactate concentration and diamine oxidase (DAO) activity in serum, and increased the relative mRNA expression of ZO-1, Claudin-1, Occludin, TLR2, TLR4, and TLR9, as well as the relative protein expression of Occludin in the jejunum (P &lt; 0.05). However, the growth performance and all analyzed parameters in serum and intestinal tissues were not further improved when piglets fed 600 vs. 400 mg/kg bacteriophage (P &gt; 0.05). MiSeq sequencing analysis showed that bacteriophage regulated the microbial composition in caecum digesta, as indicated by higher observed_species, Chao1, and ACE richness indices, as well as changes in the relative abundance of Firmicutes, Bacteroidetes, and Tenericutes (P &lt; 0.05). Collectively, 400 mg/kg bacteriophage can be used as an antibiotics alternative for promoting the growth of weaned piglets. The underlying mechanism is associated with a positive effect of bacteriophage on intestinal inflammation, intestinal barrier function and gut microbiota in weaned piglets.


2022 ◽  
Vol 25 (8) ◽  
pp. 864-873
Author(s):  
A. Y. Tikunov ◽  
A. N. Shvalov ◽  
V. V. Morozov ◽  
I. V. Babkin ◽  
G. V. Seledtsova ◽  
...  

To date, the association of an imbalance of the intestinal microbiota with various human diseases, including both diseases of the gastrointestinal tract and disorders of the immune system, has been shown. However, despite the huge amount of accumulated data, many key questions still remain unanswered. Given limited data on the composition of the gut microbiota in patients with ulcerative colitis (UC) and irritable bowel syndrome (IBS) from different parts of Siberia, as well as the lack of data on the gut microbiota of patients with bronchial asthma (BA), the aim of the study was to assess the biodiversity of the gut microbiota of patients with IBS, UC and BA in comparison with those of healthy volunteers (HV). In this study, a comparative assessment of the biodiversity and taxonomic structure of gut microbiome was conducted based on the sequencing of 16S rRNA genes obtained from fecal samples of patients with IBS, UC, BA and volunteers. Sequences of the Firmicutes and Bacteroidetes types dominated in all samples studied. The third most common in all samples were sequences of the Proteobacteria type, which contains pathogenic and opportunistic bacteria. Sequences of the Actinobacteria type were, on average, the fourth most common. The results showed the presence of dysbiosis in the samples from patients compared to the sample from HVs. The ratio of Firmicutes/Bacteroidetes was lower in the IBS and UC samples than in HV and higher the BA samples. In the samples from patients with intestinal diseases (IBS and UC), an increase in the proportion of sequences of the Bacteroidetes type and a decrease in the proportion of sequences of the Clostridia class, as well as the Ruminococcaceae, but not Erysipelotrichaceae family, were found. The IBS, UC, and BA samples had signif icantly more Proteobacteria sequences, including Methylobacterium, Sphingomonas, Parasutterella, Halomonas, Vibrio, as well as Escherichia spp. and Shigella spp. In the gut microbiota of adults with BA, a decrease in the proportion of Roseburia, Lachnospira, Veillonella sequences was detected, but the share of Faecalibacterium and Lactobacillus sequences was the same as in healthy individuals. A signif icant increase in the proportion of Halomonas and Vibrio sequences in the gut microbiota in patients with BA has been described for the f irst time.


2020 ◽  
Vol 11 ◽  
Author(s):  
Zhen Wang ◽  
Junfeng Lu ◽  
Jingwei Zhou ◽  
Weiwei Sun ◽  
Yang Qiu ◽  
...  

Obesity and related metabolic disorders are associated with intestinal microbiota dysbiosis, disrupted intestinal barrier and chronic inflammation. Shen-Yan-Fang-Shuai formula (SYFSF) is a traditional Chinese herbal formula composed of Astragali Radix, Radix Angelicae Sinensis, Rheum Officinale Baill, and four other herbs. In this study, we identified that SYFSF treatment prevented weight gain, low-grade inflammation and insulin resistance in high-fat diet (HFD)-fed mice. SYFSF also substantially improved gut barrier function, reduced metabolic endotoxemia, as well as systemic inflammation. Sequencing of 16S rRNA genes obtained from fecal samples demonstrated that SYFSF attenuated HFD-induced gut dysbiosis, seen an decreased Firmicutes to Bacteroidetes ratios. Microbial richness and diversity were also higher in the SYFSF-treated HFD group. Furthermore, similar therapeutic effects and changes in gut microbiota profile caused by SYFSF could be replicated by fecal microbiota transfer (FMT). Taken together, our study highlights the efficacy of SYFSF in preventing obesity and related metabolic disorders. Its therapeutic effect is associated with the modulation of gut microbiota, as a prebiotic.


2019 ◽  
Vol 10 (5) ◽  
pp. 2701-2709 ◽  
Author(s):  
Jie Yin ◽  
Fengna Li ◽  
Xiangfeng Kong ◽  
Chaoyue Wen ◽  
Qiuping Guo ◽  
...  

This study aimed at investigating the effects of dietary xylo-oligosaccharide (XOS) on intestinal functions (i.e., intestinal morphology, tight junctions, gut microbiota and metabolism) and growth performance in weaned piglets.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 355-355
Author(s):  
Jinsu Hong ◽  
Tofuko A Woyengo

Abstract The objective of this study was to determine the interactive effects of dietary fiber source and lipid source on growth performance and visceral organ weights of weaned pigs. Two hundred and eighty 21 days old pigs [initial body weight (BW) = 6.84 kg] were housed in 40 pens (7 pigs/pen). The pigs were fed 4 diets (10 pens/diet) in a randomized complete block design in 2 phases, Phase 1 from day 0 to 14 and Phase 2 from day 14 to 35. The diets were corn-soybean meal-based with either sugar beet pulp (SBP) or soybean hulls (SBH) as fiber source and either soybean oil (SBO) or choice white grease (CWG) as fat source in 2 × 2 factorial arrangement. The BW and feed intake were determined by phase, whereas visceral organ weights were determined on day 35. Fiber source and fat source did not interact on growth performance and organ weights relative to BW. Pigs fed CWG-containing diets had lower (P &lt; 0.05) gain to feed ratio than those fed SBO-containing diets by 7.95% during Phase 1 of feeding. Pigs fed SBP-containing diets had lower (P &lt; 0.05) gain to feed ratio than those fed SBH-containing diets by 7.94% during Phase 1 of feeding. However, pigs fed SBP-containing diets had greater (P &lt; 0.05) stomach weight, and tended to have greater (P &lt; 0.1) heart, small intestine and large intestine weights relative to BW than those fed SBO-containing diets. In conclusion, replacement of SBH with SBP in diets for weaned pigs reduced feed efficiency and increased visceral organ weights relative to BW, implying that the replacement of SBH with SBP in diets of weaned pigs increased energy expenditure in visceral organs. Inclusion of SBO (at the expense of CWG) in diets for weaned pigs can improve feed efficiency.


2016 ◽  
Vol 5 (6) ◽  
pp. 124
Author(s):  
Kouadio N. Joseph ◽  
Akoa E. Edwige ◽  
Kra K. A. Séverin ◽  
Niamke L. Sébastien

The aim of this study was to valorize senescent plantain. Therefore, a traditional dish named Dockounou was prepared with a mixture of senescent plantain and various millet, soybean, sorghum, cassava, maize or rice flours. The growth performance of several Wistar rats feed by Dockounou was followed. Thus, batches of rats were fed for 15 days with three formulations (F1, F2, F3) in proportion of 90:10, 80:20 and 75:25 (senescent plantain dough/flours) obtained after two cooking modes (dry cooking: baked ; wet cooking: boiled). The effects of these formulations were compared to control diet (C. diet). Beyond the control diet, rats fed with the soybean baked Dockounou presented, the best following growth parameters: weight gain (2.82 to 4.19 g/d), food intake (8.92 to 9.72 g/d), feed efficiency (0.10 to 0.42), proteins intake (8.28 to 19.67), proteins efficiency (0.13 to 3.15). The physicochemical and nutritive characteristics of soybean baked Dockounou were as follow: ash (2.93 ±0.15 %), proteins (10.62±0.59 %), carbohydrates (15.46±1.53 %), calcium (232.04 – 558.20 mg/100g), potassium (313.97 – 385.11 mg/100g), magnesium (42.40 – 72.22 mg/100g), sodium (211.24 – 303.85 mg/100g) and phosphorus (330.70 – 433.71 mg/100g). Also, the study showed that, two formulations, 80:20 and 75:25, have really impact on rats growth. These results suggest that soybean baked Dockounou with important proportions, 80 % and 75 %, of senescent plantain dough can be effectively used in the diet of laboratory Wistar rats regarding the good zoological performances there are obtained.


Nutrients ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 87 ◽  
Author(s):  
Konomi Tamura ◽  
Hiroyuki Sasaki ◽  
Kazuto Shiga ◽  
Hiroki Miyakawa ◽  
Shigenobu Shibata

Soy protein intake is known to cause microbiota changes. While there are some reports about the effect of soy protein intake on gut microbiota and lipid metabolism, effective timing of soy protein intake has not been investigated. In this study, we examined the effect of soy protein intake timing on microbiota. Mice were fed twice a day, in the morning and evening, to compare the effect of soy protein intake in the morning with that in the evening. Mice were divided into three groups: mice fed only casein protein, mice fed soy protein in the morning, and mice fed soy protein in the evening under high-fat diet conditions. They were kept under the experimental condition for two weeks and were sacrificed afterward. We measured cecal pH and collected cecal contents and feces. Short-chain fatty acids (SCFAs) from cecal contents were measured by gas chromatography. The microbiota was analyzed by sequencing 16S rRNA genes from feces. Soy protein intake whether in the morning or evening led to a greater microbiota diversity and a decrease in cecal pH resulting from SCFA production compared to casein intake. In addition, these effects were relatively stronger by morning soy protein intake. Therefore, soy protein intake in the morning may have relatively stronger effects on microbiota than that in the evening.


Sign in / Sign up

Export Citation Format

Share Document