scholarly journals The underestimated role of the microphthalmia-associated transcription factor (MiTF) in normal and pathological haematopoiesis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alessia Oppezzo ◽  
Filippo Rosselli

AbstractHaematopoiesis, the process by which a restrained population of stem cells terminally differentiates into specific types of blood cells, depends on the tightly regulated temporospatial activity of several transcription factors (TFs). The deregulation of their activity or expression is a main cause of pathological haematopoiesis, leading to bone marrow failure (BMF), anaemia and leukaemia. TFs can be induced and/or activated by different stimuli, to which they respond by regulating the expression of genes and gene networks. Most TFs are highly pleiotropic; i.e., they are capable of influencing two or more apparently unrelated phenotypic traits, and the action of a single TF in a specific setting often depends on its interaction with other TFs and signalling pathway components. The microphthalmia-associated TF (MiTF) is a prototype TF in multiple situations. MiTF has been described extensively as a key regulator of melanocyte and melanoma development because it acts mainly as an oncogene. Mitf-mutated mice show a plethora of pleiotropic phenotypes, such as microphthalmia, deafness, abnormal pigmentation, retinal degeneration, reduced mast cell numbers and osteopetrosis, revealing a greater requirement for MiTF activity in cells and tissue. A growing amount of evidence has led to the delineation of key roles for MiTF in haematopoiesis and/or in cells of haematopoietic origin, including haematopoietic stem cells, mast cells, NK cells, basophiles, B cells and osteoclasts. This review summarizes several roles of MiTF in cells of the haematopoietic system and how MiTFs can impact BM development.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 648-648
Author(s):  
Naoya Suzuki ◽  
Asuka Hira ◽  
Akira Niwa ◽  
Megumu Saito ◽  
Keitaro Matsuo ◽  
...  

Abstract Abstract 648 Introduction Fanconi anemia (FA) is a genome instability disorder with clinical characteristics including progressive bone marrow failure (BMF), developmental abnormalities, and increased occurrence of leukemia and cancer. To date 15 genes have been implicated in FA, and their products form a common DNA repair network often referred to as “FA pathway”. Following DNA damage or replication stress, the FA pathway is activated, leading to the monoubiquitination of FANCD2 and FANCI proteins (the ID complex). The monoubiquitinated ID complex is loaded on damaged chromatin with subnuclear foci formation, and mediates homologous recombination. Since cells derived from FA patients are hypersensitive to treatments that induce DNA interstrand cross-links (ICLs), the FA pathway has been considered to function in ICL repair. However, it still remains unclear what type of endogenous DNA damage is repaired through the FA pathway and is the cause of phenotypes in FA patients. Recent studies have suggested that cells deficient in the FA pathway are also sensitive to formaldehyde and acetaldehyde. Aldehydes may create DNA adducts including ICLs or protein DNA crosslinking. These results raise a possibility that the FA pathway prevents BMF by mitigating genotoxicity due to endogenous aldehydes. It has been known that ALDH2 deficiency resulting from Glu487Lys substitution (A allele) is prevalent in East Asian populations. While the Glu487 form (G allele) is proficient in aldehyde catabolism, even the GA heterozygote displayed strongly reduced catalysis because ALDH2 is a tetrameric enzyme and the variant form can suppress the activity in a dominant negative manner. Therefore some Japanese FA patients are expected to be deficient in ALDH2, providing an opportunity to test role of ALDH2 and aldehyde metabolism in human FA patients. Results and discussion In FA fetus, p53/p21 axis has already activated in fetal liver (Ceccaldi, Cell stem cell, 2012), indicating the possibility that hematopoietic defects in FA patients originates from an earlier developmental stage. Since human hematopoietic system originates from embryonic mesoderm, we set out to estimate the role of ALDH2 and FANCA pathway during early embryogenesis. For this, we reprogrammed somatic cells from a patient with ALDH2 GA genotype and observed their in vitro mesodermal differentiation. We first introduced reprogramming factors into fibroblasts by episomal vectors, and obtained colonies which are morphologically compatible with human induced pluripotent stem cells (iPSCs). These iPSC-like cells (designated as FA-iPLCs) showed close similarity to conventional ES/iPSCs regarding marker gene expressions and differentiation ability into three germ layers. We obtained gene-complemented FA-iPLCs (designated as cFA-iPLCs) for control study. To evaluate the impact of ALDH2 activity on iPSC- or iPLC-derived mesodermal differentiation, we next adapted the previously reported serum-free monolayer culture system. Both FA- and cFA-iPLCs showed similar differentiation manners with conventional embryonic stem cells and iPSCs, and percentages of KDR+ mesodermal progenitors including KDR+CD34+ common hemoangiogenic progenitors were comparable. Notably, ALDH2 agonist Alda1 did increase only FA-iPLC-derived mesodermal progenitors but not cFA-iPLCs. These data supported the hypothesis that mesodermal development towards hematopoietic cells in human can be affected by ALDH2 activity in the absence of FA pathway. To confirm the hypothesis, next we set out to assess whether the variation in ALDH2 affects symptoms in Japanese FA patients. Strikingly, we found that progression of BMF was strongly accelerated in heterozygous carrier of the variant A allele compared to homozygous GG patients. Furthermore we looked at occurrence of leukemia and/or myelodysplasia and the somatic developments. Interestingly, these were not significantly difference between patients with each variation of ALDH2, indicating the possibility that aldehydes affect only in early hematopoietic development, not other mesodermal tissues. Overall, our results from FA-iPLCs and clinical study indicate that the variation in ALDH2 affects the occurrence of bone marrow failure in FA patients, and that hematopoietic defect in FA patients is caused by aldehydes in early mesodermal developmental stage. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 5 (6) ◽  
pp. 1594-1604
Author(s):  
Michihiro Hashimoto ◽  
Terumasa Umemoto ◽  
Ayako Nakamura-Ishizu ◽  
Takayoshi Matsumura ◽  
Tomomasa Yokomizo ◽  
...  

Abstract Hematopoietic stem cells (HSCs) undergo self-renewal or differentiation to sustain lifelong hematopoiesis. HSCs are preserved in quiescence with low mitochondrial activity. Recent studies indicate that autophagy contributes to HSC quiescence through suppressing mitochondrial metabolism. However, it remains unclear whether autophagy is involved in the regulation of neonatal HSCs, which proliferate actively. In this study, we clarified the role of autophagy in neonatal HSCs using 2 types of autophagy-related gene 7 (Atg7)-conditional knockout mice: Mx1-Cre inducible system and Vav-Cre system. Atg7-deficient HSCs exhibited excess cell divisions with enhanced mitochondrial metabolism, leading to bone marrow failure at adult stage. However, Atg7 deficiency minimally affected hematopoiesis and metabolic state in HSCs at neonatal stage. In addition, Atg7-deficient neonatal HSCs exhibited long-term reconstructing activity, equivalent to wild-type neonatal HSCs. Taken together, autophagy is dispensable for stem cell function and hematopoietic homeostasis in neonates and provide a novel aspect into the role of autophagy in the HSC regulation.


2020 ◽  
Author(s):  
Jong Ho Choi ◽  
Jin Seok ◽  
Seung Mook Lim ◽  
Tae Hee Kim ◽  
Gi Jin Kim

Abstract Background: Translational studies have explored the therapeutic potential and feasibility of mesenchymal stem cells (MSCs) in several degenerative diseases; however, the mechanistic studies of the function of these cells have been insufficient. As ovarian failures cause anovulation as well as ovarian steroid hormonal unbalances, the specific aims of this study were to analyze the therapeutic role of placenta derived MSCs (PD-MSCs) in an ovarian-failure ovariectomy (OVX) rat model and evaluate whether PD-MSCs transplantation (Tx) improved folliculogenesis and oocyte maturation in the injured ovary through PI3K/Akt and FOXO signaling. Methods: Blood and ovary tissue were collected and analyzed after various PD-MSCs Tx treatments in the ovariectomized rat model. Changes in the expression of folliculogenesis and ovary regeneration-related genes due to PD-MSCs treatments were analyzed by qRT-PCR, Western blotting, and histological analysis. Results: The levels of hormones related to ovary function were significantly increased in the PD-MSCs Tx groups compared with those of the non-transplantation group (NTx). The follicle numbers in the ovarian tissues were increased along with increased expression of genes related to folliculogenesis for PD-MSCs Tx compared with NTx groups. Furthermore, PD-MSCs Tx induced maturation of follicles by increasing the phosphorylation of GSK3 beta and FOXO3 (p<0.05) and shifting the balance of growth and apoptosis in the oocytes. Conclusions: Taken together, PD-MSCs Tx can restore the ovarian function as well as induce ovarian folliculogenesis via the PI3K/Akt and FOXO signaling pathway.


2018 ◽  
Author(s):  
Iratxe Estibariz ◽  
Annemarie Overmann ◽  
Florent Ailloud ◽  
Juliane Krebes ◽  
Josenhans Josenhans ◽  
...  

ABSTRACTHelicobacter pylori encodes a large number of Restriction-Modification (R-M) systems despite its small genome.R-M systems have been described as “primitive immune systems” in bacteria, but the role of methylation in bacterial gene regulation and other processes is increasingly accepted. Every H.pylori strain harbours a unique set of R-M systems resulting in a highly diverse methylome. We identified a highly conserved GCGC-specific m5C MTase (JHP1050) that was predicted to be active in all of 459 H.pylori genome sequences analyzed. Transcriptome analysis of two H.pylori strains and their respective MTase mutants showed that inactivation of the MTase led to changes in the expression of 225 genes in strain J99, and 29 genes in strain BCM-300.10 genes were differentially expressed in both mutated strains. Combining bioinformatic analysis and site-directed mutagenesis, we demonstrated that motifs overlapping the promoter influence the expression of genes directly, while methylation of other motifs might cause secondary effects.Thus, m5C methylation modifies the transcription of multiple genes, affecting important phenotypic traits that include adherence to host cells, natural competence for DNA uptake, bacterial cell shape, and susceptibility to copper.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Kyung-Suk Moon ◽  
Sang-Hui Yu ◽  
Ji-Myung Bae ◽  
Seunghan Oh

We cultured human mesenchymal stem cells (hMSCs) on TiO2nanotubes with diameters of 30–100 nm to assess the size-effect of TiO2nanotubes on the behavior and osteogenic functionality of hMSCs. Most studies of the expression of genes encoding alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), and integrin-β (INT-B), after 1 week of incubation, supported the results of cell viability and MTT assays at 48 hrs of plating. However, after 2 weeks of incubation, expression of ALP, OPN, INT-B, and protein kinase R-like ER kinase (PERK) genes were significantly higher in cells cultured on 70 nm TiO2nanotubes than that in cells cultured on other TiO2nanotubes and Ti. This biphasic osteogenic characteristic of hMSCs is supposed to relating to the nature of the hMSCs adhering to the substrate at the beginning of incubation, and the nanostructural stimulation caused by the topography of TiO2nanotubes at a later stage of incubation. The discovery of these biphasic characteristics of hMSCs cultured on different-sized TiO2nanotubes may contribute to resolving the discrepant results relating to the size-effect of TiO2nanotubes on the adhesion, proliferation, and functionality of cells.


2020 ◽  
Author(s):  
Jong Ho Choi ◽  
Jin Seok ◽  
Seung Mook Lim ◽  
Tae Hee Kim ◽  
Gi Jin Kim

Abstract Background: Translational studies have explored the therapeutic potential and feasibility of mesenchymal stem cells (MSCs) in several degenerative diseases; however, the mechanistic studies of the function of these cells have been insufficient. As ovarian failures cause anovulation as well as ovarian steroid hormonal unbalances, the specific aims of this study were to analyze the therapeutic role of placenta derived MSCs (PD-MSCs) in an ovarian-failure ovariectomy (OVX) rat model and evaluate whether PD-MSCs transplantation (Tx) improved folliculogenesis and oocyte maturation in the injured ovary through PI3K/Akt and FOXO signaling. Methods: Blood and ovary tissue were collected and analyzed after various PD-MSCs Tx treatments in the ovariectomized rat model. Changes in the expression of folliculogenesis and ovary regeneration-related genes due to PD-MSCs treatments were analyzed by qRT-PCR, Western blotting, and histological analysis. Results: The levels of hormones related to ovary function were significantly increased in the PD-MSCs Tx groups compared with those of the non-transplantation group (NTx). The follicle numbers in the ovarian tissues were increased along with increased expression of genes related to folliculogenesis for PD-MSCs Tx compared with NTx groups. Furthermore, PD-MSCs Tx induced maturation of follicles by increasing the phosphorylation of GSK3 beta and FOXO3 (p<0.05) and shifting the balance of growth and apoptosis in the oocytes. Conclusions: Taken together, PD-MSCs Tx can restore the ovarian function as well as induce ovarian folliculogenesis via the PI3K/Akt and FOXO signaling pathway.


2021 ◽  
Vol 218 (3) ◽  
Author(s):  
Adeline Rosu ◽  
Najla El Hachem ◽  
Francesca Rapino ◽  
Kevin Rouault-Pierre ◽  
Joseph Jorssen ◽  
...  

The hematopoietic system is highly sensitive to perturbations in the translational machinery, of which an emerging level of regulation lies in the epitranscriptomic modification of transfer RNAs (tRNAs). Here, we interrogate the role of tRNA anticodon modifications in hematopoiesis by using mouse models of conditional inactivation of Elp3, the catalytic subunit of Elongator that modifies wobble uridine in specific tRNAs. Loss of Elp3 causes bone marrow failure by inducing death in committing progenitors and compromises the grafting activity of hematopoietic stem cells. Mechanistically, Elp3 deficiency activates a p53-dependent checkpoint in what resembles a misguided amino acid deprivation response that is accompanied by Atf4 overactivation and increased protein synthesis. While deletion of p53 rescues hematopoiesis, loss of Elp3 prompts the development of p53-mutated leukemia/lymphoma, and inactivation of p53 and Elongator cooperatively promotes tumorigenesis. Specific tRNA-modifying enzymes thus condition differentiation and antitumor fate decisions in hematopoietic stem cells and progenitors.


Sign in / Sign up

Export Citation Format

Share Document