scholarly journals Bone marrow mesenchymal stem cells promote prostate cancer cell stemness via cell–cell contact to activate the Jagged1/Notch1 pathway

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji-wen Cheng ◽  
Li-xia Duan ◽  
Yang Yu ◽  
Pu Wang ◽  
Jia-le Feng ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) play a crucial role in cancer development and tumor resistance to therapy in prostate cancer, but the influence of MSCs on the stemness potential of PCa cells by cell–cell contact remains unclear. In this study, we investigated the effect of direct contact of PCa cells with MSCs on the stemness of PCa and its mechanisms. Methods First, the flow cytometry, colony formation, and sphere formation were performed to determine the stemness of PCaMSCs, and the expression of stemness-related molecules (Sox2, Oct4, and Nanog) was investigated by western blot analysis. Then, we used western blot and qPCR to determine the activity levels of two candidate pathways and their downstream stemness-associated pathway. Finally, we verified the role of the significantly changed pathway by assessing the key factors in this pathway via in vitro and in vivo experiments. Results We established that MSCs promoted the stemness of PCa cells by cell–cell contact. We here established that the enhanced stemness of PCaMSCs was independent of the CCL5/CCR5 pathway. We also found that PCaMSCs up-regulated the expression of Notch signaling-related genes, and inhibition of Jagged1-Notch1 signaling in PCaMSCs cells significantly inhibited MSCs-induced stemness and tumorigenesis in vitro and in vivo. Conclusions Our results reveal a novel interaction between MSCs and PCa cells in promoting tumorigenesis through activation of the Jagged1/Notch1 pathway, providing a new therapeutic target for the treatment of PCa.

2019 ◽  
Vol 28 (12) ◽  
pp. 1490-1506 ◽  
Author(s):  
Yu You ◽  
Di-guang Wen ◽  
Jian-ping Gong ◽  
Zuo-jin Liu

Liver transplantation has been deemed the best choice for end-stage liver disease patients but immune rejection after surgery is still a serious problem. Patients have to take immunosuppressive drugs for a long time after liver transplantation, and this often leads to many side effects. Mesenchymal stem cells (MSCs) gradually became of interest to researchers because of their powerful immunomodulatory effects. In the past, a large number of in vitro and in vivo studies have demonstrated the great potential of MSCs for participation in posttransplant immunomodulation. In addition, MSCs also have properties that may potentially benefit patients undergoing liver transplantation. This article aims to provide an overview of the current understanding of the immunomodulation achieved by the application of MSCs in liver transplantation, to discuss the problems that may be encountered when using MSCs in clinical practice, and to describe some of the underlying capabilities of MSCs in liver transplantation. Cell–cell contact, soluble molecules, and exosomes have been suggested to be critical approaches to MSCs’ immunoregulation in vitro; however, the exact mechanism, especially in vivo, is still unclear. In recent years, the clinical safety of MSCs has been proven by a series of clinical trials. The obstacles to the clinical application of MSCs are decreasing, but large sample clinical trials involving MSCs are still needed to further study their clinical effects.


2019 ◽  
Vol 15 (12) ◽  
pp. 2291-2304
Author(s):  
Liqun Huang ◽  
Mengwei Chen ◽  
Chang Xu ◽  
Qishuai Feng ◽  
Jiaojiao Wu ◽  
...  

The targeted delivery of nanomedicines into solid tumors remains challenging in cancer treatment. Stem cells with tumortropic migration ability are promising as biocarriers to transport nanomedicines. The transportation of nanomedicines into cancer cells is the key step for tumor targeted delivery via stem cells. In this study, we designed a magnetic nanocube (scMNP) loaded in mesenchymal stem cells for magnetic hyperthermia of prostate cancer, and the delivery and transportation pathways into the cancer cells were fully investigated. The MSCs acted as the carrier of the loaded scMNPs along with the upregulation of CXCR4 for the migration to cancer cells. The therapeutic effect was mainly due to scMNPs via magnetic hyperthermia. Stem cell-derived microvesicles containing scMNPs played an essential role in the crosstalk between stem cells and cancer cells for targeted delivery. Both in vitro and in vivo studies demonstrated that the system showed satisfactory therapeutic efficiency under magnetic hyperthermia therapy. Our investigation presents a comprehensive study of magnetic nanoparticles in combination with MSCs and their extracellular microvesicles and is promising as an effective strategy for magnetic hyperthermia therapy of prostate cancer.


2020 ◽  
Author(s):  
Yang Yu ◽  
Wen-tao Zhang ◽  
Fu-han Yang ◽  
Ya-dong Guo ◽  
Lin Ye ◽  
...  

Abstract Background: Mesenchymal stem cells (MSCs) have been proved to accelerate prostate cancer (PCa) castration resistance progression. The purpose of this study is to investigate the contribution of MSCs to the development of docetaxel resistance in castration-resistant prostate cancer (CRPC) cells and its potential mechanisms.Methods: The effect of MSCs on CRPC cells resistance to docetaxel was determined using in-vivo and in-vitro approaches. CCK8 and PI/Annexin V-FITC assay were used to examined the cell viability and apoptosis. The concentration of transforming growth factor-β1 was measured by enzyme-linked immunosorbent assay and small interfering RNA was used for functional analyses.Results: MSCs significantly reduced the sensitivity of CRPC cells to docetaxel-induced proliferation inhibition and apoptosis promotion in vivo and in vitro. CRPC cells cocultured with MSCs under docetaxel administration have an increased autophagy activation, while autophagy inhibitor could effectively reversed MSCs-induced resistance to docetaxel. Additionally, MSCs-induced CRPC cell autophagy increase under docetaxel administration depends on MSCs secreting TGF-β1 and inhibition of TGF-β1 secretion in MSCs could consequently increase the sensitivity of CRPC cells to docetaxel.Conclusions: These results suggest that docetaxel administrated CRPC cells may elicit MSCs secreting TGF-β1 increase, which desensitizes CRPC to docetaxel chemotherapy accelerating chemoresistance occurrence via inducing cell autophagy.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1660 ◽  
Author(s):  
Claudia Terraza-Aguirre ◽  
Mauricio Campos-Mora ◽  
Roberto Elizondo-Vega ◽  
Rafael A. Contreras-López ◽  
Patricia Luz-Crawford ◽  
...  

Mesenchymal stem cells (MSCs) exhibit potent immunoregulatory abilities by interacting with cells of the adaptive and innate immune system. In vitro, MSCs inhibit the differentiation of T cells into T helper 17 (Th17) cells and repress their proliferation. In vivo, the administration of MSCs to treat various experimental inflammatory and autoimmune diseases, such as rheumatoid arthritis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, and bowel disease showed promising therapeutic results. These therapeutic properties mediated by MSCs are associated with an attenuated immune response characterized by a reduced frequency of Th17 cells and the generation of regulatory T cells. In this manuscript, we review how MSC and Th17 cells interact, communicate, and exchange information through different ways such as cell-to-cell contact, secretion of soluble factors, and organelle transfer. Moreover, we discuss the consequences of this dynamic dialogue between MSC and Th17 well described by their phenotypic and functional plasticity.


2021 ◽  
Author(s):  
Yuan Zhu ◽  
Xiao Zhang ◽  
Kunkun Yang ◽  
Yuzi Shao ◽  
Ranli Gu ◽  
...  

Abstract Background In tissue engineering, mesenchymal stem cells (MSCs) are common seed cells because of abundant sources, strong proliferation ability and immunomodulatory function. Numerous researches have demonstrated that MSC-macrophage crosstalk played a key role in the tissue engineering. Macrophages could regulate the differentiation of MSCs via different molecular mechanisms, including extracellular vesicles. Apoptotic macrophages could generate large amounts of apoptotic vesicles (apoVs), whereas the functions of macrophage-derived apoVs remain largely unknown. There was no research to clarify the role of macrophage-derived apoVs in MSC fate choices. In this study, we aimed to characterize macrophage-derived apoVs, and investigate the roles of macrophage-derived apoVs in the fate commitment of MSCs. Methods We characterized macrophage-derived apoVs, and investigated their role in MSC osteogenesis and adipogenesis in vitro and in vivo. Furthermore, we performed microRNA loss- and gain- of function experiments and western blot to determine the molecular mechanism. Results We found that macrophage-derived apoVs inhibited osteogenesis and promoted adipogenesis in vitro and in vivo. In mechanism, apoVs regulated osteogenesis and adipogenesis of MSCs by delivering microRNA155 (miR155). Conclusions Macrophage-derived apoVs could regulate the osteogenesis and adipogenesis of MSCs through delivering miR155, which provided novel insights for MSC-mediated tissue engineering.


2020 ◽  
Author(s):  
Yang Yu ◽  
Wen-tao Zhang ◽  
Fu-han Yang ◽  
Ya-dong Guo ◽  
Lin Ye ◽  
...  

Abstract Background: Mesenchymal stem cells (MSCs) have been proved to accelerate prostate cancer (PCa) castration resistance progression. The purpose of this study is to investigate the contribution of MSCs to the development of docetaxel resistance in castration-resistant prostate cancer (CRPC) cells and its potential mechanisms. Methods: The effect of MSCs on CRPC cells resistance to docetaxel was determined using in-vivo and in-vitro approaches. CCK8 and PI/Annexin V-FITC assay were used to examined the cell viability and apoptosis. The concentration of transforming growth factor-β1 was measured by enzyme-linked immunosorbent assay and small interfering RNA was used for functional analyses. Results: MSCs significantly reduced the sensitivity of CRPC cells to docetaxel-induced proliferation inhibition and apoptosis promotion in vivo and in vitro. CRPC cells cocultured with MSCs under docetaxel administration have an increased autophagy activation, while autophagy inhibitor could effectively reversed MSCs-induced resistance to docetaxel. Additionally, MSCs-induced CRPC cell autophagy increase under docetaxel administration depends on MSCs secreting TGF-β1 and inhibition of TGF-β1 secretion in MSCs could consequently increase the sensitivity of CRPC cells to docetaxel. Conclusions: These results suggest that docetaxel administrated CRPC cells may elicit MSCs secreting TGF-β1 increase, which desensitizes CRPC to docetaxel chemotherapy accelerating chemoresistance occurrence via inducing cell autophagy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yang Yu ◽  
Fu-han Yang ◽  
Wen-tao Zhang ◽  
Ya-dong Guo ◽  
Lin Ye ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) have been proved to drive castration resistant prostate cancer (CRPC). In this study, we aim to investigate the contribution of MSCs to the development of docetaxel resistance in CRPC cells and its potential mechanisms. Methods The effect of MSCs on CRPC cells resistance to docetaxel was determined using in vivo and in vitro approaches. CCK8 and PI/Annexin V-FITC assay were used to examined the cell viability and apoptosis. The concentration of transforming growth factor-β1 was measured by enzyme-linked immunosorbent assay and small interfering RNA was used for functional analyses. Results MSCs significantly reduced the sensitivity of CRPC cells to docetaxel-induced proliferation inhibition and apoptosis promotion in vivo and in vitro. CRPC cells cocultured with MSCs under docetaxel administration have an increased autophagy activation, while autophagy inhibitor could effectively reversed MSCs-induced resistance to docetaxel. Additionally, MSCs-induced CRPC cell autophagy increase under docetaxel administration depends on MSCs secreting TGF-β1 and inhibition of TGF-β1 secretion in MSCs could consequently increase the sensitivity of CRPC cells to docetaxel. Conclusions These results suggest that docetaxel administrated CRPC cells may elicit MSCs secreting TGF-β1 increase, which desensitizes CRPC to docetaxel chemotherapy accelerating chemoresistance occurrence via inducing cell autophagy.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3098-3098 ◽  
Author(s):  
Rosa M. Yañez ◽  
Maria L. Lamana ◽  
Javier Garcia-Castro ◽  
Manuel Ramirez ◽  
Juan A. Bueren

Abstract Previous studies have shown the immunomodulatory properties of bone marrow mesenchymal stem cells (BM-MSCs), opening the possibility of using these cells for the treatment of graft-versus-host disease (GVHD) in patients transplanted with allogeneic hematopoietic grafts. Additionally, Phase I studies in patients with Crohn’s disease suggested the efficacy of adipose tissue-derived mesenchymal stem cells (Ad-MSCs) for the healing of Crohn’s fistulas. In the present study we have investigated in vitro and in vivo, the immunomodulatory effects of Ad-MSCs, compared to BM-MSCs. We observed that both BM-MSCs and Ad-MSCs were negative for CD34, CD45, CD14, CD31 and MHC class I expression, while positive for CD29, CD44, CD90 and CD105. When studying the immunomodulatory effects of these cells in vitro, we found that - as happened with BM-MSCs - Ad-MSCs did not induce proliferation of allogeneic lymphocytes and were not lysed by cytotoxic T cells or alloreactive natural killer cells, indicating that Ad-MSCs are non-immunogenic. Additionally, the presence of Ad-MSCs inhibited in a dose-dependent fashion, both the mixed lymphocyte reaction (MLR) and the T cell proliferation induced by mitogens. To determine whether cell-to-cell contact between Ad-MSCs and PBMNCs was required for immunosuppression, transwell experiments were conducted. Phytohaemagglutinin (PHA)-stimulated lymphocytes were cultured in the upper chamber of a transwell, while irradiated Ad-MSCs remained in the lower chamber. As observed with BM-MSCs, Ad-MSCs were also capable of suppressing the lymphocytes proliferation in this transwell assay. When conditioned medium from Ad-MSCs was added to the MLR, the immuno-suppressive effect persisted, although at a lower level than that observed in a cell-to-cell contact system. Next we studied whether our in vitro findings were of significance in an in vivo mouse model of haploidentical transplantation. In these experiments irradiated F1(C57Bl/Balbc) recipient mice received 1x107 bone marrow cells from C57Bl mice, together with 2x107 splenocytes from the donor, to induce GVHD. One cohort of recipient mice received additional i.v. infusions of 5x105 mouse Ad-MSCs, administered at periodic intervals for up to 28 days post-transplant. When compared to the control group, the severity of the GVHD was significantly reduced in mice receiving Ad-MSCs. Our results suggest that Ad-MSCs obtained from adipose tissue may constitute a new and readily available source of immunomodulatory cells for the prophylaxis and/or treatment of GVHD in patients transplanted with allogeneic grafts.


2019 ◽  
Vol 98 (9) ◽  
pp. 350-355

Introduction: There is evidence that mesenchymal stem cells (MSCs) could trans-differentiate into the liver cells in vitro and in vivo and thus may be used as an unfailing source for stem cell therapy of liver disease. Combination of MSCs (with or without their differentiation in vitro) and minimally invasive procedures as laparoscopy or Natural Orifice Transluminal Endoscopic Surgery (NOTES) represents a chance for many patients waiting for liver transplantation in vain. Methods: Over 30 millions of autologous MSCs at passage 3 were transplanted via the portal vein in an eight months old miniature pig. The deposition of transplanted cells in liver parenchyma was evaluated histologically and the trans-differential potential of CM-DiI labeled cells was assessed by expression of pig albumin using immunofluorescence. Results: Three weeks after transplantation we detected the labeled cells (solitary, small clusters) in all 10 samples (2 samples from each lobe) but no diffuse distribution in the samples. The localization of CM-DiI+ cells was predominantly observed around the portal triads. We also detected the localization of albumin signal in CM-DiI labeled cells. Conclusion: The study results showed that the autologous MSCs (without additional hepatic differentiation in vitro) transplantation through the portal vein led to successful infiltration of intact miniature pig liver parenchyma with detectable in vivo trans-differentiation. NOTES as well as other newly developed surgical approaches in combination with cell therapy seem to be very promising for the treatment of hepatic diseases in near future.


Author(s):  
Bruna O. S. Câmara ◽  
Bruno M. Bertassoli ◽  
Natália M. Ocarino ◽  
Rogéria Serakides

The use of stem cells in cell therapies has shown promising results in the treatment of several diseases, including diabetes mellitus, in both humans and animals. Mesenchymal stem cells (MSCs) can be isolated from various locations, including bone marrow, adipose tissues, synovia, muscles, dental pulp, umbilical cords, and the placenta. In vitro, by manipulating the composition of the culture medium or transfection, MSCs can differentiate into several cell lineages, including insulin-producing cells (IPCs). Unlike osteogenic, chondrogenic, and adipogenic differentiation, for which the culture medium and time are similar between studies, studies involving the induction of MSC differentiation in IPCs differ greatly. This divergence is usually evident in relation to the differentiation technique used, the composition of the culture medium, the cultivation time, which can vary from a few hours to several months, and the number of steps to complete differentiation. However, although there is no “gold standard” differentiation medium composition, most prominent studies mention the use of nicotinamide, exedin-4, ß-mercaptoethanol, fibroblast growth factor b (FGFb), and glucose in the culture medium to promote the differentiation of MSCs into IPCs. Therefore, the purpose of this review is to investigate the stages of MSC differentiation into IPCs both in vivo and in vitro, as well as address differentiation techniques and molecular actions and mechanisms by which some substances, such as nicotinamide, exedin-4, ßmercaptoethanol, FGFb, and glucose, participate in the differentiation process.


Sign in / Sign up

Export Citation Format

Share Document