scholarly journals Anti-metastatic effect of GV1001 on prostate cancer cells; roles of GnRHR-mediated Gαs-cAMP pathway and AR-YAP1 axis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji Won Kim ◽  
Miso Park ◽  
Suntae Kim ◽  
Sung Chul Lim ◽  
Hyung Shik Kim ◽  
...  

Abstract Background Gonadotropin-releasing hormone receptor (GnRHR) transmits its signal via two major Gα-proteins, primarily Gαq and Gαi. However, the precise mechanism underlying the functions of Gαs signal in prostate cancer cells is still unclear. We have previously identified that GV1001, a fragment of the human telomerase reverse transcriptase, functions as a biased GnRHR ligand to selectively stimulate the Gαs/cAMP pathway. Here, we tried to reveal the potential mechanisms of which GV1001-stimulated Gαs-cAMP signaling pathway reduces the migration and metastasis of prostate cancer (PCa) cells. Methods The expression of epithelial-mesenchymal transition (EMT)-related genes was measured by western-blotting and spheroid formation on ultra-low attachment plate was detected after GV1001 treatment. In vivo Spleen-liver metastasis mouse model was used to explore the inhibitory effect of GV1001 on metastatic ability of PCa and the transwell migration assay was performed to identify whether GV1001 had a suppressive effect on cell migration in vitro. In order to demonstrate the interaction between androgen receptor (AR) and YAP1, co-immunoprecipitation (co-IP), immunofluorescence (IF) staining, chromatin immunoprecipitation (ChIP) were performed in LNCaP cells with and without GV1001 treatment. Results GV1001 inhibited expression of EMT-related genes and spheroid formation. GV1001 also suppressed in vivo spleen-liver metastasis of LNCaP cells as well as cell migration in vitro. GV1001 enhanced the phosphorylation of AR and transcription activity of androgen response element reporter gene through cAMP/protein kinase A pathway. Moreover, GV1001 increased Ser-127 phosphorylation of YAP1 and its ubiquitination, and subsequently decreased the levels of AR-YAP1 binding in the promoter region of the CTGF gene. In contrast, both protein and mRNA levels of NKX3.1 known for tumor suppressor gene and AR-coregulator were upregulated by GV1001 in LNCaP cells. YAP1 knockout using CRISPR/Cas9 significantly suppressed the migration ability of LNCaP cells, and GV1001 did not affect the cell migration of YAP1-deficient LNCaP cells. On the contrary, cell migration was more potentiated in LNCaP cells overexpressing YAP5SA, a constitutively active form of YAP1, which was not changed by GV1001 treatment. Conclusions Overall, this study reveals an essential role of AR-YAP1 in the regulation of PCa cell migration, and provides evidence that GV1001 could be a novel GnRHR ligand to inhibit metastasis of PCa via the Gαs/cAMP pathway.

2021 ◽  
Author(s):  
Ji Won Kim ◽  
Miso Park ◽  
Suntae Kim ◽  
Sung Chul Lim ◽  
Hyung Shik Kim ◽  
...  

Abstract Background: Gonadotropin-releasing hormone receptor (GnRHR) transmits its signal via two major Gα-proteins, primarily Gαq and Gαi. However, the precise mechanism underlying the functions of Gαs signal in prostate cancer cells is still unclear. We have previously identified that GV1001, a fragment of the human telomerase reverse transcriptase, functions as a biased GnRHR ligand to selectively stimulate the Gas/cAMP pathway. Here, we tried to reveal the potential mechanisms of which GV1001- stimulated Gαs-cAMP signaling pathway reduces the migration and metastasis of prostate cancer (PCa) cells.Methods: The expression of epithelial-mesenchymal transition (EMT)-related genes was measured by western-blotting and spheroid formation on ultra-low attachment plate was detected after GV1001 treatment. In vivo Spleen-liver metastasis mouse model was used to explore the inhibitory effect of GV1001 on metastatic ability of PCa and the transwell migration assay was performed to identify whether GV1001 had a suppressive effect on cell migration in vitro. In order to demonstrate the interaction between androgen receptor (AR) and YAP1, co-immunoprecipitation (co-IP), immunofluorescence (IF) staining, chromatin immunoprecipitation (ChIP) were performed in LNCaP cells with and without GV1001 treatment.Results: GV1001 inhibited expression of EMT-related genes and spheroid formation. GV1001 also suppressed in vivo spleen-liver metastasis of LNCaP cells as well as cell migration in vitro. GV1001 enhanced the phosphorylation of AR and transcription activity of androgen response element reporter gene through cAMP/protein kinase A pathway. Moreover, GV1001 increased Ser-127 phosphorylation of YAP1 and its ubiquitination, and subsequently decreased the levels of AR-YAP1 binding in the promoter region of the CTGF gene. In contrast, both protein and mRNA levels of NKX3.1 known for tumor suppressor gene and AR-coregulator were upregulated by GV1001 in LNCaP cells. YAP1 knockout using CRISPR/Cas9 significantly suppressed the migration ability of LNCaP cells, and GV1001 did not affect the cell migration of YAP1-deficient LNCaP cells. On the contrary, cell migration was more potentiated in LNCaP cells overexpressing YAP5SA, a constitutively active form of YAP1, which was not changed by GV1001 treatment. Conclusions: Overall, this study reveals an essential role of AR-YAP1 in the regulation of PCa cell migration, and provide evidence that GV1001 could be a novel GnRHR ligand to inhibit metastasis of PCa via the Gas/cAMP pathway.


2021 ◽  
Author(s):  
Ji Won Kim ◽  
Miso Park ◽  
Suntae Kim ◽  
Sung Chul Lim ◽  
Hyung Shik Kim ◽  
...  

Abstract Background: Gonadotropin-releasing hormone receptor (GnRHR) transmits its signal via two major Gα-proteins, primarily Gαq and Gαi. However, the precise mechanism underlying the functions of Gαs signal in prostate cancer cells is still unclear. We have previously identified that GV1001, a fragment of the human telomerase reverse transcriptase, functions as a biased GnRHR ligand to selectively stimulate the Gas/cAMP pathway. Here, we tried to reveal the potential mechanisms of which GV1001- stimulated Gαs-cAMP signaling pathway reduces the migration and metastasis of prostate cancer (PCa) cells.Methods: The expression of epithelial-mesenchymal transition (EMT)-related genes was measured by western-blotting and spheroid formation on ultra-low attachment plate was detected after GV1001 treatment. In vivo Spleen-liver metastasis mouse model was used to explore the inhibitory effect of GV1001 on metastatic ability of PCa and the transwell migration assay was performed to identify whether GV1001 had a suppressive effect on cell migration in vitro. In order to demonstrate the interaction between androgen receptor (AR) and YAP1, co-immunoprecipitation (co-IP), immunofluorescence (IF) staining, chromatin immunoprecipitation (ChIP) were performed in LNCaP cells with and without GV1001 treatment.Results: GV1001 inhibited expression of EMT-related genes and spheroid formation. GV1001 also suppressed in vivo spleen-liver metastasis of LNCaP cells as well as cell migration in vitro. GV1001 enhanced the phosphorylation of AR and transcription activity of androgen response element reporter gene through cAMP/protein kinase A pathway. Moreover, GV1001 increased Ser-127 phosphorylation of YAP1 and its ubiquitination, and subsequently decreased the levels of AR-YAP1 binding in the promoter region of the CTGF gene. In contrast, both protein and mRNA levels of NKX3.1 known for tumor suppressor gene and AR-coregulator were upregulated by GV1001 in LNCaP cells. YAP1 knockout using CRISPR/Cas9 significantly suppressed the migration ability of LNCaP cells, and GV1001 did not affect the cell migration of YAP1-deficient LNCaP cells. On the contrary, cell migration was more potentiated in LNCaP cells overexpressing YAP5SA, a constitutively active form of YAP1, which was not changed by GV1001 treatment. Conclusions: Overall, this study reveals an essential role of AR-YAP1 in the regulation of PCa cell migration, and provide evidence that GV1001 could be a novel GnRHR ligand to inhibit metastasis of PCa via the Gas/cAMP pathway.


2013 ◽  
Vol 25 (1) ◽  
pp. 245 ◽  
Author(s):  
H.-R. Lee ◽  
S.-H. Hyun ◽  
E.-B. Jeung ◽  
K.-C. Choi

Endocrine-disrupting chemicals (EDC) can bind to the hormone receptor and induce an unexpected hormone response to activate oestrogen receptor (ER)- and androgen receptor (AR)-mediated signalling pathways. Among EDC, bisphenol A (BPA) has a detrimental effect on the endocrine system and is suspected to promote human breast and ovarian cancers. Recent studies have reported that phthalate can disrupt the endocrine system and has a weak estrogenic activity with binding to ER. In this study, we demonstrated whether BPA and dibutyl phthalate (DBP) stimulate the proliferation of prostate cancer cells, LNCaP cells, which have both ER and AR. We evaluated the proliferative rate of LNCaP cells following BPA and DBP treatment using a cell viability assay compared with EtOH treatment as a negative control. Further, we examined the alteration of cell cycle-related gene expressions and TGF-β signalling molecules by semiquantitative RT-PCR. Both BPA and DBP increased LNCaP cell growth more than 2-fold. Moreover, these EDC altered transcriptional expressions of cell cycle-related genes, cyclin D1 and p21, at 6 h in LNCaP cells after exposure of BPA and DBP. Like 17β-oestradiol (E2) and dihydrotestosterone (DHP), treatments of BPA and DBP lead to an increase of the transcriptional levels of c-myc and c-fos in LNCaP cells from 30 min to 6 h. In addition, BPA and DBP decreased the protein level of not only p-smad but also total smad, suggesting that these EDC can affect the molecules of the TGF-β signalling pathway. It was of interest that these effects of EDC were reversed by an antagonist of ER or AR signalling pathways in these prostate cancer cells. These results suggest that BPA and phthalate can alter various gene expressions in TGF-β signalling molecules and stimulate cell growth in prostate cancer cells in vitro. In addition, the growth of prostate cancer cells was stimulated following the exposure of E2, DHT, and DBP in vivo. Taken together, these results indicate the potential of BPA and phthalate in the carcinogenesis of prostate cancer by the oestrogen or androgen-dependent signalling pathway. This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) of Korea government (no. 2011-0015385).


Author(s):  
Denisa Baci ◽  
Antonino Bruno ◽  
Caterina Cascini ◽  
Matteo Gallazzi ◽  
Lorenzo Mortara ◽  
...  

Abstract Background Prostate cancer (PCa) is a leading cause of cancer-related death in males worldwide. Exacerbated inflammation and angiogenesis have been largely demonstrated to contribute to PCa progression. Diverse naturally occurring compounds and dietary supplements are endowed with anti-oxidant, anti-inflammatory and anti-angiogenic activities, representing valid compounds to target the aberrant cytokine/chemokine production governing PCa progression and angiogenesis, in a chemopreventive setting. Using mass spectrometry analysis on serum samples of prostate cancer patients, we have previously found higher levels of carnitines in non-cancer individuals, suggesting a protective role. Here we investigated the ability of Acetyl-L-carnitine (ALCAR) to interfere with key functional properties of prostate cancer progression and angiogenesis in vitro and in vivo and identified target molecules modulated by ALCAR. Methods The chemopreventive/angiopreventive activities ALCAR were investigated in vitro on four different prostate cancer (PCa) cell lines (PC-3, DU-145, LNCaP, 22Rv1) and a benign prostatic hyperplasia (BPH) cell line. The effects of ALCAR on the induction of apoptosis and cell cycle arrest were investigated by flow cytometry (FC). Functional analysis of cell adhesion, migration and invasion (Boyden chambers) were performed. ALCAR modulation of surface antigen receptor (chemokines) and intracellular cytokine production was assessed by FC. The release of pro-angiogenic factors was detected by a multiplex immunoassay. The effects of ALCAR on PCa cell growth in vivo was investigated using tumour xenografts. Results We found that ALCAR reduces cell proliferation, induces apoptosis, hinders the production of pro inflammatory cytokines (TNF-α and IFN-γ) and of chemokines CCL2, CXCL12 and receptor CXCR4 involved in the chemotactic axis and impairs the adhesion, migration and invasion capabilities of PCa and BPH cells in vitro. ALCAR exerts angiopreventive activities on PCa by reducing production/release of pro angiogenic factors (VEGF, CXCL8, CCL2, angiogenin) and metalloprotease MMP-9. Exposure of endothelial cells to conditioned media from PCa cells, pre-treated with ALCAR, inhibited the expression of CXCR4, CXCR1, CXCR2 and CCR2 compared to those from untreated cells. Oral administration (drinking water) of ALCAR to mice xenografted with two different PCa cell lines, resulted in reduced tumour cell growth in vivo. Conclusions Our results highlight the capability of ALCAR to down-modulate growth, adhesion, migration and invasion of prostate cancer cells, by reducing the production of several crucial chemokines, cytokines and MMP9. ALCAR is a widely diffused dietary supplements and our findings provide a rational for studying ALCAR as a possible molecule for chemoprevention approaches in subjects at high risk to develop prostate cancer. We propose ALCAR as a new possible “repurposed agent’ for cancer prevention and interception, similar to aspirin, metformin or beta-blockers.


Sign in / Sign up

Export Citation Format

Share Document