scholarly journals Antigen-induced airway hyperresponsiveness and obstruction is related to caveolin-1 expression in airway smooth muscle in a guinea pig asthma model

Author(s):  
Mayra Álvarez-Santos ◽  
Patricia Ramos-Ramírez ◽  
Fernando Gutiérrez-Aguilar ◽  
Sandra Sánchez-Hernández ◽  
Ricardo Lascurain ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xin Peng ◽  
Yi Wu ◽  
Xiao Kong ◽  
Yunxiu Chen ◽  
Yonglu Tian ◽  
...  

Our previous study showed that neonatal S. pneumoniae infection aggravated airway inflammation and airway hyperresponsiveness (AHR) in an OVA-induced allergic asthma model. As airway smooth muscle (ASM) plays a pivotal role in AHR development, we aim to investigate the effects of neonatal S. pneumoniae pneumonia on ASM structure and AHR development. Non-lethal neonatal pneumonia was established by intranasally infecting 1-week-old BALB/C mice with the S. pneumoniae strain D39. Five weeks after infection, the lungs were collected to assess the levels of α-SMA and the contractile proteins of ASM. Our results indicate that neonatal S. pneumoniae pneumonia significantly increased adulthood lung α-SMA and SMMHC proteins production and aggravated airway inflammatory cells infiltration and cytokines release. In addition, the neonatal S. pneumoniae pneumonia group had significantly higher Penh values compared to the uninfected controls. These data suggest that neonatal S. pneumoniae pneumonia promoted an aberrant ASM phenotype and AHR development in mice model.


2020 ◽  
Author(s):  
Mayra D Alvarez-Santos ◽  
Álvarez-González Marisol ◽  
Eslava-De Jesus Elizabeth ◽  
Angel González-López ◽  
Pacheco-Alba Ivonne ◽  
...  

Abstract Background: Airway obstruction in asthma is driven by airway smooth muscle (ASM) contraction. Airway obstruction can be induced extrinsically by direct stimulation of ASM with contractile agonists or by indirect provocation with antigens, while the airway baseline tone is dependent on intrinsic obstruction. The ASM phenotypes involved in all types of obstruction seem to be related.Methods: To determination the associations of the ASM phenotypes involved in different types of airway obstruction, guinea pigs were sensitized to ovalbumin and repetitively challenged with antigen. At the third challenge, histamine provocation was used to evaluate airway responsiveness (AR), and lung samples were obtained to calculate the airway wall area. ASM cells from the trachea were disaggregated to determine 1) the percentage of cells that expressed transforming growth factor-β1 (TGF-β1), interleukin-13 (IL-13) and sarco-endoplasmic Ca2+ ATPase-2b (SERCA2b) by flow cytometry; 2) SERCA2B gene expression by RT-PCR; 3) the level of reduced glutathione (GSH) by ELISA; and 4) the sarcoplasmic reticulum Ca2+ refilling rate by microfluorometry. The control guinea pig group received only saline instead of ovalbumin. Comparisons were made using t-tests, and the associations were determined using Spearman correlation coefficient analysis.Results: Antigenic challenges induced airway obstruction and progressive incremental changes in airway baseline tone. The AR to histamine and the expression of TGF-β1 in ASM cells was increased in the asthma model. The airway wall mass and expression of IL-13 and SERCA2b in ASM cells were similar between groups. SERCA2B gene expression and GSH levels were reduced in the asthma group. The extent of antigen-induced airway obstruction was directly associated with ASM cell TGF-β1 expression and the degree of AR. The magnitude of AR and antigen-induced airway obstruction showed an inverse correlation with GSH levels. The airway baseline tone showed an inverse association with SERCA2b expression. No relationship was observed between direct or indirect airway obstruction and the airway tone. After caffeine withdrawal, the rate of sarcoplasmic reticulum Ca2+ refilling was similar in both groups.Conclusions: Each type of airway obstruction depends on different ASM phenotypes: 1) direct and indirect airway obstruction seems to be sensitive to the level of ASM oxidative stress; 2) indirect obstruction induced by antigen appears to be influenced by the expression of TGF-β1 in ASM; and 3) the SERCA2b expression level in ASM cells plays a role in the intrinsic airway tone.


2011 ◽  
Vol 301 (4) ◽  
pp. L607-L614 ◽  
Author(s):  
Venkatachalem Sathish ◽  
Amard J. Abcejo ◽  
Sarah Kay VanOosten ◽  
Michael A. Thompson ◽  
Y. S. Prakash ◽  
...  

Diseases such as asthma are characterized by airway hyperresponsiveness. Enhanced airway smooth muscle (ASM) intracellular Ca2+ ([Ca2+]i) response to agonist stimulation leading to increased airway constriction has been suggested to contribute to airway hyperresponsiveness. Caveolae are flask-shaped plasma membrane invaginations that express the scaffolding protein caveolin and contain multiple proteins important in [Ca2+]i signaling (e.g., agonist receptors, ion channels). We recently demonstrated that caveolae and caveolin-1 are important in [Ca2+]i regulation in human ASM. Proinflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-13 modulate [Ca2+]i in ASM. We hypothesized that cytokine upregulation of caveolar signaling in ASM contributes to enhanced agonist-induced [Ca2+]i in inflammation. Enzymatically dissociated human ASM cells were exposed to medium (control), 20 ng/ml TNF-α, or 50 ng/ml IL-13 for 24 h. Caveolae-enriched membrane fractions displayed substantial increase in caveolin-1 and -2 expressions by TNF-α and IL-13. Transfection with caveolin-1-mRed DNA substantially accelerated and increased plasma membrane caveolin-1 expression by TNF-α and to a lesser extent by IL-13. Caveolin-1 enhancement was inhibited by nuclear factor-κB and mitogen-activated protein kinase inhibitors. In fura 2-loaded ASM cells, [Ca2+]i responses to 1 μM ACh, 10 μM histamine, or 10 nM bradykinin were all exaggerated by TNF-α as well as IL-13 exposure. However, disruption of caveolae using caveolin-1 suppression via small-interfering RNA resulted in significant blunting of agonist-induced [Ca2+]i responses of vehicle and TNF-α-exposed cells. These functional data were correlated to the presence of TNFR1 receptor (but not the IL-4/IL-13 receptor) within caveolae. Overall, these results indicate that caveolin-1 plays an important role in airway inflammation by modulating the effect of specific cytokines on [Ca2+]i.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Joseph A. Jude ◽  
Mythili Dileepan ◽  
Reynold A. Panettieri ◽  
Timothy F. Walseth ◽  
Mathur S. Kannan

CD38 is a transmembrane glycoprotein expressed in airway smooth muscle cells. The enzymatic activity of CD38 generates cyclic ADP-ribose from β-NAD. Cyclic ADP-ribose mobilizes intracellular calcium during activation of airway smooth muscle cells by G-protein-coupled receptors through activation of ryanodine receptor channels in the sarcoplasmic reticulum. Inflammatory cytokines that are implicated in asthma upregulate CD38 expression and increase the calcium responses to contractile agonists in airway smooth muscle cells. The augmented intracellular calcium responses following cytokine exposure of airway smooth muscle cells are inhibited by an antagonist of cyclic ADP-ribose. Airway smooth muscle cells from CD38 knockout mice exhibit attenuated intracellular calcium responses to agonists, and these mice have reduced airway response to inhaled methacholine. CD38 also contributes to airway hyperresponsiveness as shown in mouse models of allergen or cytokine-induced inflammatory airway disease. In airway smooth muscle cells obtained from asthmatics, the cytokine-induced CD38 expression is significantly enhanced compared to expression in cells from nonasthmatics. This differential induction of CD38 expression in asthmatic airway smooth muscle cells stems from increased activation of MAP kinases and transcription through NF-κB, and altered post-transcriptional regulation through microRNAs. We propose that increased capacity for CD38 signaling in airway smooth muscle in asthma contributes to airway hyperresponsiveness.


1995 ◽  
Vol 78 (4) ◽  
pp. 1555-1563 ◽  
Author(s):  
S. De ◽  
E. T. Zelazny ◽  
J. F. Souhrada ◽  
M. Souhrada

Guinea pig airway smooth muscle (ASM) cells were maintained in a primary tissue culture (passages 1–3). Cells were exposed to human recombinant interleukin-1 beta (IL-1 beta; 20–100 pg/ml) or interleukin-6 (IL-6; 1–4 ng/ml) in the presence of indomethacin (1 microgram/ml) for up to 5 days. Proliferation of ASM cells was assessed with two techniques, direct counting of cells with a hemacytometer and [3H]thymidine incorporation corrected for total protein content. Hypertrophy of ASM cells was assessed by [3H]leucine incorporation (evaluation of protein synthesis), determination of total DNA content, DNA content per cell, and protein content per cell. We observed that the exposure of ASM cells to human recombinant IL-1 beta or IL-6, in all studied concentrations, significantly increased the number of cells as well as [3H]thymidine incorporation into ASM cells. We also found that exposure of ASM to these two cytokines increased [3H]leucine incorporation into the ASM cells and increased protein content and DNA content per single cell. These changes were also concentration dependent. We conclude that the two proinflammatory cytokines, IL-1 beta and IL-6, which are present in asthmatic lungs, increased the proliferation of ASM cells (hyperplasia) as well as their overall size and size of their nuclei, as measured by biochemical markers. These findings are compatible with the presence of ASM hypertrophy.


2013 ◽  
Vol 115 (9) ◽  
pp. 1304-1315 ◽  
Author(s):  
Audrey Lee-Gosselin ◽  
Chris D. Pascoe ◽  
Christian Couture ◽  
Peter D. Paré ◽  
Ynuk Bossé

Airway wall remodeling and lung hyperinflation are two typical features of asthma that may alter the contractility of airway smooth muscle (ASM) by affecting its operating length. The aims of this study were as follows: 1) to describe in detail the “length dependency of ASM force” in response to different spasmogens; and 2) to predict, based on morphological data and a computational model, the consequence of this length dependency of ASM force on airway responsiveness in asthmatic subjects who have both remodeled airway walls and hyperinflated lungs. Ovine tracheal ASM strips and human bronchial rings were isolated and stimulated to contract in response to increasing concentrations of spasmogens at three different lengths. Ovine tracheal strips were more sensitive and generated greater force at longer lengths in response to acetylcholine (ACh) and K+. Equipotent concentrations of ACh were approximately a log less for ASM stretched by 30% and approximately a log more for ASM shortened by 30%. Similar results were observed in human bronchi in response to methacholine. Morphometric and computational analyses predicted that the ASM of asthmatic subjects may be elongated by 6.6–10.4% (depending on airway generation) due to remodeling and/or hyperinflation, which could increase ACh-induced force by 1.8–117.8% (depending on ASM length and ACh concentration) and enhance the increased resistance to airflow by 0.4–4,432.8%. In conclusion, elongation of ASM imposed by airway wall remodeling and/or hyperinflation may allow ASM to operate at a longer length and to consequently generate more force and respond to lower concentration of spasmogens. This phenomenon could contribute to airway hyperresponsiveness.


Sign in / Sign up

Export Citation Format

Share Document