scholarly journals Ecto-GPR37: a potential biomarker for Parkinson’s disease

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Xavier Morató ◽  
Paula Garcia-Esparcia ◽  
Josep Argerich ◽  
Franc Llorens ◽  
Inga Zerr ◽  
...  

Abstract Objective α-Synuclein has been studied as a potential biomarker for Parkinson’s disease (PD) with no concluding results. Accordingly, there is an urgent need to find out reliable specific biomarkers for PD. GPR37 is an orphan G protein-coupled receptor that toxically accumulates in autosomal recessive juvenile parkinsonism. Here, we investigated whether GPR37 is upregulated in sporadic PD, and thus a suitable potential biomarker for PD. Methods GPR37 protein density and mRNA expression in postmortem substantia nigra (SN) from PD patients were analysed by immunoblot and RT-qPCR, respectively. The presence of peptides from the N-terminus-cleaved domain of GPR37 (i.e. ecto-GPR37) in human cerebrospinal fluid (CSF) was determined by liquid chromatography-mass spectrometric analysis. An engineered in-house nanoluciferase-based immunoassay was used to quantify ecto-GPR37 in CSF samples from neurological control (NC) subjects, PD patients and Alzheimer’s disease (AD) patients. Results GPR37 protein density and mRNA expression were significantly augmented in sporadic PD. Increased amounts of ecto-GPR37 peptides in the CSF samples from PD patients were identified by mass spectrometry and quantified by the in-house ELISA method. However, the CSF total α-synuclein level in PD patients did not differ from that in NC subjects. Similarly, the cortical GPR37 mRNA expression and CSF ecto-GPR37 levels in AD patients were also unaltered. Conclusion GPR37 expression is increased in SN of sporadic PD patients. The ecto-GPR37 peptides are significantly increased in the CSF of PD patients, but not in AD patients. These results open perspectives and encourage further clinical studies to confirm the validity and utility of ecto-GPR37 as a potential PD biomarker.

2021 ◽  
pp. 135901
Author(s):  
Alma Cristina Salas-Leal ◽  
Sergio M. Salas-Pacheco ◽  
Alfredo Pérez Gavilán-Ceniceros ◽  
Francisco X. Castellanos-Juárez ◽  
Edna M. Méndez-Hernández ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Chen Tian ◽  
Genliang Liu ◽  
Liyan Gao ◽  
David Soltys ◽  
Catherine Pan ◽  
...  

Nutrition ◽  
2015 ◽  
Vol 31 (2) ◽  
pp. 406-408 ◽  
Author(s):  
Kazuki Ide ◽  
Hiroshi Yamada ◽  
Keizo Umegaki ◽  
Katsuki Mizuno ◽  
Nobuko Kawakami ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 28
Author(s):  
Tennekoon B. Karunaratne ◽  
Chijioke Okereke ◽  
Marissa Seamon ◽  
Sharad Purohit ◽  
Chandramohan Wakade ◽  
...  

Dysbiosis is implicated by many studies in the pathogenesis of Parkinson’s disease (PD). Advances in sequencing technology and computing have resulted in confounding data regarding pathogenic bacterial profiles in conditions such as PD. Changes in the microbiome with reductions in short-chain fatty acid (SCFA)-producing bacteria and increases in endotoxin-producing bacteria likely contribute to the pathogenesis of PD. GPR109A, a G-protein coupled receptor found on the surface of the intestinal epithelium and immune cells, plays a key role in controlling intestinal permeability and the inflammatory cascade. The absence of GPR109A receptors is associated with decreased concentration of tight junction proteins, leading to increased intestinal permeability and susceptibility to inflammation. In inflammatory states, butyrate acts via GPR109A to increase concentrations of tight junction proteins and improve intestinal permeability. Niacin deficiency is exacerbated in PD by dopaminergic medications. Niacin supplementation has been shown to shift macrophage polarization from pro-inflammatory to an anti-inflammatory profile. Niacin and butyrate, promising nutrients and unique ligands for the G protein-coupled receptor GPR109A, are reviewed in this paper in detail.


2018 ◽  
Vol 10 ◽  
pp. 117957351880358 ◽  
Author(s):  
Ashish Kumar Gupta ◽  
Komal Rani ◽  
Surabhi Swarnkar ◽  
Gaurav Khunger Kumar ◽  
Mohd Imran Khan ◽  
...  

Aim of the Study: Parkinson’s disease and schizophrenia are disease end points of dopaminergic deficit and hyperactivity, respectively, in the mid brain. Accordingly, current medications aim to restore normal dopamine levels, overshooting of which results in adverse effects of psychosis and extra-pyramidal symptoms, respectively. There are currently no available laboratory tests to guide treatment decisions or help predict adverse side effects of the drugs. The aim was to therefore explore the possibility of using apolipoprotein E as a biomarker to monitor pharmacological intervention in dopamine dictated states of Parkinson’s disease and schizophrenia for optimum therapy. Methods: Naïve and treated, Parkinson’s disease and schizophrenic patients were recruited from neurology and psychiatry clinics. Serum of healthy volunteers was collected as controls. Serum concentrations of apolipoprotein E was estimated by enzyme-linked immunosorbent assay (ELISA). Pathway analysis was carried out to delineate the interactions of apolipoprotein E in Parkinson’s disease and schizophrenia. Results: Apolipoprotein E levels are higher in Parkinson’s disease patients as compared with schizophrenic samples ( P < .05). Also, post-treatment apolipoprotein E levels in both disease states were at par with levels seen in healthy controls. The interactions of apolipoprotein E validate the results and place the differential expression of the protein in Parkinson’s disease and schizophrenia in the right perspective. Conclusion: Apolipoprotein E concentration across the dopaminergic spectrum suggests that it can be pursued not only as a potential biomarker in schizophrenia and Parkinson’s disease, but can also be an effective tool for clinicians to determine efficacy of drug-based therapy.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Shane V. Hegarty ◽  
Aideen M. Sullivan ◽  
Gerard W. O’Keeffe

Parkinson’s disease (PD) is the second most common neurodegenerative disease, and is characterized by the progressive degeneration of nigrostriatal dopaminergic (DA) neurons. Current PD treatments are symptomatic, wear off over time and do not protect against DA neuronal loss. Finding a way to re-grow midbrain DA (mDA) neurons is a promising disease-modifying therapeutic strategy for PD. However, reliable biomarkers are required to allow such growth-promoting approaches to be applied early in the disease progression. miR-181a has been shown to be dysregulated in PD patients, and has been identified as a potential biomarker for PD. Despite studies demonstrating the enrichment of miR-181a in the brain, specifically in neurites of postmitotic neurons, the role of miR-181a in mDA neurons remains unknown. Herein, we used cell culture models of human mDA neurons to investigate a potential role for miR-181a in mDA neurons. We used a bioninformatics analysis to identify that miR-181a targets components of the bone morphogenetic protein (BMP) signalling pathway, including the transcription factors Smad1 and Smad5, which we find are expressed by rat mDA neurons and are required for BMP-induced neurite growth. We also found that inhibition of neuronal miR-181a, resulted in increased Smad signalling, and induced neurite growth in SH-SY5Y cells. Finally, using embryonic rat cultures, we demonstrated that miR-181a inhibition induces ventral midbrain (VM) and cortical neuronal growth. These data describe a new role for miR-181a in mDA neurons, and provide proof of principle that miR-181a dysresgulation in PD may alter the activation state of signalling pathways important for neuronal growth in neurons affected in PD.


Sign in / Sign up

Export Citation Format

Share Document