scholarly journals Does hemofiltration protect the brain after head trauma? An experimental study in rabbits

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Enrique Martinez-Gonzalez ◽  
Dolores Garcia-Olmo ◽  
Empar Mayordomo-Aranda ◽  
Maria Granada-Picazo ◽  
Monica Gomez-Juarez ◽  
...  

Abstract Background Traumatic brain injury (TBI) is one of the most frequent and severe neurological diseases. In the last few decades, significant advances have been made in TBI pathophysiology and monitoring, however new treatments have not emerged. Although the central nervous system (CNS) has been historically defined as an immunologically privileged organ, recent studies show the increasingly predominant role of inflammatory and apoptotic phenomena in the pathogenesis of TBI. Inflammatory response mediators can be eliminated with continuous renal replacement therapies (CRRT). Our aim was to investigate whether hemofiltration protects the brain after head trauma in an experimental study in animals. Methods and results A model of TBI and CVVH was performed in anesthetized New Zealand white rabbits without acute renal failure. The experimental group TBI ( +)-CVVH ( +) was compared with a TBI ( +)-CVVH (−) and a TBI (−)-CVVH ( +) control groups. Rabbits were assessed immediately (NES1) and 24 h hours after (NES2) TBI and/or CVVH using a functional Neurological Evaluation Score (NES) and histology of the brains after sacrifice. There was evidence to support a difference of NES1 comparing with the TBI (−)-CVVH ( +), but not with TBI ( +)-CVVH (−) with only 15% of the rabbits treated with CVVH and TBI showing a favorable neurological course. The final neurological outcome (mortality at 24 h) was 0%, 22% and 53% in the TBI(−) + CVVH( +), TBI( +)-CVVH(−) and TBI( +)-CVVH( +) groups respectively. The use of hemofiltration before or after TBI did not make a difference in regards the outcome of the rabbits. There was evidence in the histology to support an increase of mild ischemia, hemorrhage and edema in the experimental group compared with the other two groups. Conclusions CVVH in rabbits without renal failure used with the intention to protect the brain may worsen the prognosis in TBI.

2002 ◽  
Vol 40 (2) ◽  
pp. 275-279 ◽  
Author(s):  
Stanislao Morgera ◽  
Anne K. Kraft ◽  
Gerda Siebert ◽  
Friedrich C. Luft ◽  
Hans-H. Neumayer

Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1929 ◽  
Author(s):  
Salman Ul Islam ◽  
Adeeb Shehzad ◽  
Muhammad Bilal Ahmed ◽  
Young Sup Lee

Although the global prevalence of neurological disorders such as Parkinson’s disease, Alzheimer’s disease, glioblastoma, epilepsy, and multiple sclerosis is steadily increasing, effective delivery of drug molecules in therapeutic quantities to the central nervous system (CNS) is still lacking. The blood brain barrier (BBB) is the major obstacle for the entry of drugs into the brain, as it comprises a tight layer of endothelial cells surrounded by astrocyte foot processes that limit drugs’ entry. In recent times, intranasal drug delivery has emerged as a reliable method to bypass the BBB and treat neurological diseases. The intranasal route for drug delivery to the brain with both solution and particulate formulations has been demonstrated repeatedly in preclinical models, including in human trials. The key features determining the efficacy of drug delivery via the intranasal route include delivery to the olfactory area of the nares, a longer retention time at the nasal mucosal surface, enhanced penetration of the drugs through the nasal epithelia, and reduced drug metabolism in the nasal cavity. This review describes important neurological disorders, challenges in drug delivery to the disordered CNS, and new nasal delivery techniques designed to overcome these challenges and facilitate more efficient and targeted drug delivery. The potential for treatment possibilities with intranasal transfer of drugs will increase with the development of more effective formulations and delivery devices.


Author(s):  
Reema H. Alasfar ◽  
Rima J. Isaifan

AbstractThe concern about aluminum (Al) toxicity has been proven in various cases. Some cases are associated with the fact that Al is a neurotoxic substance that has been found in high levels in the brain tissues of Alzheimer’s disease (AD), epilepsy, and autism patients. Other cases are related to infants, especially premature infants and ones with renal failure, who are at the risk of developing the central nervous system (CNS) and bone toxicity. This risk is a result of infants’ exposure to Al from milk formulas, intravenous-feeding solutions, and possibly from aluminum-containing vaccinations. Furthermore, most antiperspirants contain  aluminum compounds that raise human exposure to toxic Al. This review paper is intended to discuss in detail the above concerns associated with aluminum, and hence urges the need for more studies exploring the effects of overexposure to Al and recommending mitigation actions.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Asako Iida ◽  
Naomi Takino ◽  
Hitomi Miyauchi ◽  
Kuniko Shimazaki ◽  
Shin-ichi Muramatsu

Recombinant adeno-associated virus (AAV) vectors are powerful tools for both basic neuroscience experiments and clinical gene therapies for neurological diseases. Intravascularly administered self-complementary AAV9 vectors can cross the blood-brain barrier. However, AAV9 vectors are of limited usefulness because they mainly transduce astrocytes in adult animal brains and have restrictions on foreign DNA package sizes. In this study, we show that intracardiac injections of tyrosine-mutant pseudotype AAV9/3 vectors resulted in extensive and widespread transgene expression in the brains and spinal cords of adult mice. Furthermore, the usage of neuron-specific promoters achieved selective transduction of neurons. These results suggest that tyrosine-mutant AAV9/3 vectors may be effective vehicles for delivery of therapeutic genes, including miRNAs, into the brain and for treating diseases that affect broad areas of the central nervous system.


2016 ◽  
Vol 23 (1) ◽  
pp. 27-39 ◽  
Author(s):  
Ruxandra Covacu ◽  
Lou Brundin

Neural stem/progenitor cells (NSCs/NPCs) are present in different locations in the central nervous system. In the subgranular zone (SGZ) there is a constant generation of new neurons under normal conditions. New neurons are also formed from the subventricular zone (SVZ) NSCs, and they migrate anteriorly as neuroblast to the olfactory bulb in rodents, whereas in humans migration is directed toward striatum. Most CNS injuries elicit proliferation and migration of the NSCs toward the injury site, indicating the activation of a regenerative response. However, regeneration from NSC is incomplete, and this could be due to detrimental cues encountered during inflammation. Different CNS diseases and trauma cause activation of the innate and adaptive immune responses that influence the NSCs. Furthermore, NSCs in the brain react differently to inflammatory cues than their counterparts in the spinal cord. In this review, we have summarized the effects of inflammation on NSCs in relation to their origin and briefly described the NSC activity during different neurological diseases or experimental models.


Sign in / Sign up

Export Citation Format

Share Document