scholarly journals Natural forests in New Zealand – a large terrestrial carbon pool in a national state of equilibrium

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Thomas Paul ◽  
Mark O. Kimberley ◽  
Peter N. Beets

Abstract Background Natural forests cover approximately 29% of New Zealand’s landmass and represent a large terrestrial carbon pool. In 2002 New Zealand implemented its first representative plot-based natural forest inventory to assess carbon stocks and stock changes in these mostly undisturbed old-growth forests. Although previous studies have provided estimates of biomass or carbon stocks, these were either not fully representative or lacked data from important pools such as dead wood (coarse woody debris). The current analysis provides the most complete estimates of carbon stocks and stock changes in natural forests in New Zealand. Results We present estimates of per hectare carbon stocks and stock changes in live and dead organic matter pools excluding soil carbon based on the first two measurement cycles of the New Zealand Natural Forest Inventory carried out from 2002 to 2014. These show that New Zealand’s natural forests are in balance and are neither a carbon source nor a carbon sink. The average total carbon stock was 227.0 ± 14.4 tC·ha− 1 (95% C.I.) and did not change significantly in the 7.7 years between measurements with the net annual change estimated to be 0.03 ± 0.18 tC·ha− 1·yr− 1. There was a wide variation in carbon stocks between forest groups. Regenerating forest had an averaged carbon stock of only 53.6 ± 9.4 tC·ha− 1 but had a significant sequestration rate of 0.63 ± 0.25 tC·ha− 1·yr− 1, while tall forest had an average carbon stock of 252.4 ± 15.5 tC·ha− 1, but its sequestration rate did not differ significantly from zero (− 0.06 ± 0.20 tC·ha− 1·yr− 1). The forest alliance with the largest average carbon stock in above and below ground live and dead organic matter pools was silver beech-red beech-kamahi forest carrying 360.5 ± 34.6 tC·ha− 1. Dead wood and litter comprised 27% of the total carbon stock. Conclusions New Zealand’s Natural Forest Inventory provides estimates of carbon stocks including estimates for difficult to measure pools such as dead wood and roots. It also provides estimates of uncertainties including effects of model prediction error and sampling variation between plots. Importantly it shows that on a national level New Zealand’s natural forests are in balance. Nevertheless, this is a nationally important carbon pool that requires continuous monitoring to identify potential negative or positive changes.

Author(s):  
Volodymyr Pasternak ◽  
Tetiana Pyvovar ◽  
Volodymyr Yarotsky

The issues of carbon stock and dynamic in different carbon pools in forest stands of Left-bank Forest-steppe of Ukraine are considered. The aim of the study was to evaluate carbon stocks and their changes in main pools: trees biomass and mortmass. Data of two repeated observations on 19 permanent intensive forest monitoring plots in Kharkiv and Sumy regions were used. Conversion method was used. Study of increment and mortality dynamics at monitoring plots showed, that two processes impact carbon balance: biotic damage which leads to trees dieback, and partial removal of dead wood from stands. Oak stands have, on average, higher carbon stock in trees biomass and mortmass (102.9 t С ha-1) than the pine stands (98.7 t С ha-1), which is associated with a higher representation of mature and overmature oak stands. While comparison by age classes showed that pine stands, in general, have higher values of C in trees biomass, due to higher productivity. The increase in carbon stocks with age is observed. The annual change of C stock in trees biomass is the highest in younger stands, and it decreases with age; while in mortmass it increases. Mature and overmature oak stands have negative trees biomass and positive dead wood growth. At age 81-100 years oak forest stands have higher carbon storage capacity than pine (total carbon stock in main pools (biomass, mortmass, litter and soils (30-cm layer)) is 191.7 t C ha-1 for oak and 175.4 t C ha-1 for pine stands). Trees biomass carbon prevails among other pools (50.3 % in oak forests, and 57.6% in pine), the next is soil carbon pool (45.9 and 29.0%, respectively). National forest inventory will provide data for assessments of carbon stocks and dynamics in trees biomass and mortmass pools. However, forest soil monitoring is necessary to evaluate carbon pools in soils and litter.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 227
Author(s):  
Tamiru Kefalew ◽  
Mulugeta Betemariyam ◽  
Motuma Tolera

Background Gura-Ferda forest is one of the Afromontane rainforests in the southwestern region of Ethiopia. However, since 1984, large parts of this forest have become increasingly disturbed and fragmented due to forest conversion into forest farm interface and farmlands. The study was conducted to assess changes of woody species diversity and carbon stock in association with the conversion of natural forest to forest farm interface and farmlands. Methods Data were collected from natural forest, forest farm interface and farmland which are historically forest lands before 1984. A total of 90 nested plots (20m×20m for natural forest and forest farm interface; 50m*100m for farmland)) were established for inventory of woody species. Three 1m×1m subplots were established to collect litter and soil samples. A total of 180 soil samples were collected. The total carbon stocks were estimated by summing carbon stock in the biomass and soil (0-60 cm depth). Results Results showed that Shannon-Wiener diversity (H’) in forest farm interface (H’ = 1.42±0.49) is significantly lower than that of natural forest (H’ = 2.72±0.31) but significantly higher than farmland (H’ = 1.08±0.57). The total carbon stocks of natural forest (388.54±161.63 Mg C ha-1) were approximately 1.53 and 2.67 times higher than that of forest farm interface (252.95±41.86 Mg C ha-1) and farmland (145.58±25.94 Mg C ha-1). Conclusion Our study revealed that along the conversion gradient of natural forest to forest farm interface and farmland there was a significant change of woody species diversity and carbon stocks.


Author(s):  
Can Vatandaşlar ◽  
Saygin Abdikan

AbstractForest ecosystems play a crucial role in mitigating global climate change by forming massive carbon sinks. Their carbon stocks and stock changes need to be quantified for carbon budget balancing and international reporting schemes. However, direct sampling and biomass weighing may not always be possible for quantification studies conducted in large forests. In these cases, indirect methods that use forest inventory information combined with remote sensing data can be beneficial. Synthetic aperture radar (SAR) images offer numerous opportunities to researchers as freely distributed remote sensing data. This study aims to estimate the amount of total carbon stock (TCS) in forested lands of the Kizildag Forest Enterprise. To this end, the actual storage capacities of five carbon pools, i.e. above- and below-ground, deadwood, litter, and soil, were calculated using the indirect method based on ground measurements of 264 forest inventory plots. They were then associated with the backscattered values from Sentinel-1 and ALOS-2 PALSAR-2 data in a Geographical Information System (GIS). Finally, TCS was separately modelled and mapped. The best regression model was developed using the HH polarization of ALOS-2 PALSAR-2 with an adjusted R2 of 0.78 (p < 0.05). According to the model, the estimated TCS was about 2 Mt for the entire forest, with an average carbon storage of 133 t ha−1. The map showed that the distribution of TCS was heterogenic across the study area. Carbon hotspots were mostly composed of pure stands of Anatolian black pine and mixed, over-mature stands of Lebanese cedar and Taurus fir. It was concluded that the total carbon stocks of forest ecosystems could be estimated using appropriate SAR images at acceptable accuracy levels for forestry purposes. The use of additional ancillary data may provide more delicate and reliable estimations in the future. Given the implications of this study, the spatiotemporal dynamics of carbon can be effectively controlled by forest management when coupled with easily accessible space-borne radar data.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 227
Author(s):  
Tamiru Kefalew ◽  
Mulugeta Betemariyam ◽  
Motuma Tolera

Background: Gura-Ferda forest is one of the Afromontane rainforests in the southwestern region of Ethiopia. However, since 1984, large parts of this forest have become increasingly disturbed and fragmented due to forest conversion into forest farm interface and farmlands. The study was conducted to assess changes of woody species diversity and carbon stock in association with the conversion of natural forest to forest farm interface and farmlands. Methods: Data were collected from natural forest, forest farm interface and farmland which are historically forest lands before 1984. A total of 90 nested plots (20m×20m for natural forest and forest farm interface; 50m*100m for farmland)) were established for inventory of woody species. Three 1m×1m subplots were established to collect litter and soil samples. A total of 180 soil samples were collected. The total carbon stocks were estimated by summing carbon stock in the biomass and soil (0-60 cm depth). Results: Results showed that Shannon-Wiener diversity (H’) in forest farm interface (H’ = 1.57) is relatively lower than that of natural forest (H’ = 3.33) but higher than farmland (H’ = 1.42). The total carbon stocks of natural forest were approximately 1.21 and 2.54 times higher than that of forest farm interface and farmland. Conclusion: Our study revealed that the changes of Natural Forest to Forest Farm Interface and Farmland have effects on the diversity of woody species and carbon stocks.


2014 ◽  
Vol 19 (1) ◽  
pp. 1 ◽  
Author(s):  
Supriadi Supriadi ◽  
Richardus F Kaswadji ◽  
Dietrich G Bengen ◽  
Malikusworo Hutomo

Konsep blue carbon yang diperkenalkan oleh UNEP, FAO dan UNESCO pada tahun 2009 memasukkan padang lamun sebagai salah satu ekosistem yang mempunyai peran dalam penyerapan karbon global. Karbon yang diserap disimpan dan dialirkan dalam beberapa kompartemen, antara lain di sedimen, herbivora, kolom air, ekosistem lain dan dalam bentuk biomassa. Penelitian dilakukan di Pulau Barranglompo, Makassar, untuk melihat potensi stok karbon yang tersimpan dalam biomassa lamun. Kepadatan lamun diukur dengan melakukan sampling menggunakan metode transek kuadrat dengan ukuran 50cm x 50cm. Sedangkan untuk biomassa dilakukan dengan transek 20cm x 20cm. Hubungan antara kepadatan, biomassa dan kandungan karbon dari lamun digunakan untuk menentukan jumlah stok karbon. Kepadatan lamun disurvei pada 236 titik, sedangkan untuk pengambilan sampel biomassa dilakukan pada 30 titik. Hasil penelitian menunjukkan bahwa komunitas lamun mempunyai total stok karbon sebesar 73,86 ton dari total luas padang lamun 64,3 ha. Karbon di bawah substrat sebesar 56,55 ton (76,3%), lebih tinggi dibanding karbon di atas substrat yang hanya 17,57 ton (23,7%). Jenis lamun Enhalus acoroides menyumbang lebih dari 70% terhadap total stok karbon. Berdasarkan kelas karbon, kontribusi terbesar ditemukan pada kelas 100-200 gC.m-2 sebesar 29,41 ton (39,7%). Hasil ini menunjukkan bahwa ekosistem lamun berperan sangat penting dalam menjaga stok karbon di laut sehingga perlu mendapatkan perhatian untuk konservasinya. Kata kunci: konsep blue karbon, lamun, Barranglompo   Blue carbon concept as introduced by UNEP, FAO and UNESCO in 2009 included seagrass beds as one ecosystem having a significant role in global carbon absorption. Absorbed carbon was stored and distributed in various compartments such as in sediments, herbivores, water column, other ecosystems and in form of biomass. The research was conducted in Barranglompo Island, Makassar City to analyze the potency of carbon stock that stored within seagrass biomass. Seagrass density was sampled using quadrat transect method with size of 50cm x 50cm. While for biomass was done by harvesting seagrass at transect of 20cm x 20cm in root penetration depth. Relationship between density, biomass and carbon content of seagrass were used to determine total carbon stock. Seagrass density was surveyed at 236 points, while for biomass sampling was conducted in 30 points. The results showed that seagrass community had total carbon stocks as much as 73.86 tonnes from overall 64.3 ha of seagrass bed areas.  Below ground carbon had 56.55 tonnes (76.3%), higher compared to that aboveground which only 17.57 tonnes (23.7%). Seagrass species Enhalus acoroides contributed more than 70% to the total carbon stocks, whereas, based on the carbon classes, the highest contribution was found at class 100-200 gC.m-2 i.e. 29.41 tonnes (39.7%). These results suggest that seagrass ecosystem plays an important role in maintaining the carbon stock in the ocean and should receive good attention for its conservation. Keywords: blue carbon concept, seagrass, Barranglompo


Author(s):  
Bayu Elwanto Bagus Dewanto ◽  
Retnadi Heru Jatmiko

Estimation of aboveground carbon stock on stands vegetation, especially in green open space, has become an urgent issue in the effort to calculate, monitor, manage, and evaluate carbon stocks, especially in a massive urban area such as Samarinda City, Kalimantan Timur Province, Indonesia. The use of Sentinel-1 imagery was maximised to accommodate the weaknesses in its optical imagery, and combined with its ability to produce cloud-free imagery and minimal atmospheric influence. The study aims to test the accuracy of the estimated model of above-ground carbon stocks, to ascertain the total carbon stock, and to map the spatial distribution of carbon stocks on stands vegetation in Samarinda City. The methods used included empirical modelling of carbon stocks and statistical analysis comparing backscatter values and actual carbon stocks in the field using VV and VH polarisation. Model accuracy tests were performed using the standard error of estimate in independent accuracy test samples. The results show that Samarinda Utara subdistrict had the highest carbon stock of 3,765,255.9 tons in the VH exponential model. Total carbon stocks in the exponential VH models were 6,489,478.1 tons, with the highest maximum accuracy of 87.6 %, and an estimated error of 0.57 tons/pixel.


2014 ◽  
Vol 5 ◽  
pp. 63-67
Author(s):  
Tshering Dolma Lama ◽  
Ram Asheshwar Mandal

A study was carried on ten leasehold forests of Katakuti VDC, Dolakha district to estimate the carbon stock. Random sampling was used to collect the biophysical data of trees/ poles, sapling, root and leaf litter, herb and grass. Then, the biomass was calculated using the respective equation and the calculated biomass stock was converted into carbon stock multiplying with 0.47. Similarly, the soil samples were collectewd from different depths of 0-10 cm, 10-20 cm and 20-30 cm to determine the soil organic carbon. Lastly, all analyzed data were compiled to get total carbon stocks. The result showed that the estimated total carbon stock per ha was found to be highest in Srijana leasehold forest with 125.493 t C/ha. The estimated total carbon stock of 10 leasehold forest was found to be 1439.033 tons. Here, Leasehold forests have been an emerging and successful example in conserving forests in epal. So, it is recommended to extend such studies in other parts of Nepal. DOI: http://dx.doi.org/10.3126/init.v5i0.10255   The Initiation 2013 Vol.5; 63-67


Forests ◽  
2012 ◽  
Vol 3 (3) ◽  
pp. 818-839 ◽  
Author(s):  
Peter N. Beets ◽  
Mark O. Kimberley ◽  
Graeme R. Oliver ◽  
Stephen H. Pearce ◽  
J. Doug Graham ◽  
...  

2020 ◽  
Vol 5 (4) ◽  
pp. 525-529
Author(s):  
Basuki Wasis ◽  
Bambang Hero Saharjo ◽  
Dadan Mulyana ◽  
Atikah ◽  
Wardana

Forest and land fires will lead to the loss of forest ecosystems, loss of forest biomass and the sustainability of forests. After the event of fire whether an ecosystem will improve the forest and its environment. The study is intended to calculate biomass and carbon stocks in secondary natural forests that burn after 10 years and determine the model of biomass estimation and carbon stocks in secondary forests that burn after 10 years. This research was conducted on burnt peatlands in the Ex Million ha of Central Kalimantan Province of Indonesia. The research method used is the analysis of vegetation and destructive sampling on forest biomass that grows on burning peatlands. The result showed that biomass content of secondary natural forest formed after peat burns > 10 years in 466.2 ton / ha of and carbon content of 264.4 ton / ha. The estimation of biomass in secondary natural forest formed after peat burn> 10 years log is B = - 0.127 + 1.83 log D (B = 0.746 D 1.83) R2 : 87.5 % and carbon estimation is log K = - 0.506 + 1.92 log D (K = 0.312 D 1.92) R2: 85.7 %.  In the location of the burnt peat swamp forest there has been a succession of secondary forest and the equation model obtained in the study can be used to estimate biomass and carbon content.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4859 ◽  
Author(s):  
Jun-Wei Yue ◽  
Jin-Hong Guan ◽  
Lei Deng ◽  
Jian-Guo Zhang ◽  
Guoqing Li ◽  
...  

Background The spruce forests are dominant communities in northwest China, and play a key role in national carbon budgets. However, the patterns of carbon stock distribution and accumulation potential across stand ages are poorly documented. Methods We investigated the carbon stocks in biomass and soil in the natural spruce forests in the region by surveys on 39 plots. Biomass of tree components were estimated using allometric equations previously established based on tree height and diameter at breast height, while biomass in understory (shrub and herb) and forest floor were determined by total harvesting method. Fine root biomass was estimated by soil coring technique. Carbon stocks in various biomass components and soil (0–100 cm) were estimated by analyzing the carbon content of each component. Results The results showed that carbon stock in these forest ecosystems can be as high as 510.1 t ha−1, with an average of 449.4 t ha−1. Carbon stock ranged from 28.1 to 93.9 t ha−1 and from 0.6 to 8.7 t ha−1 with stand ages in trees and deadwoods, respectively. The proportion of shrubs, herbs, fine roots, litter and deadwoods ranged from 0.1% to 1% of the total ecosystem carbon, and was age-independent. Fine roots and deadwood which contribute to about 2% of the biomass carbon should be attached considerable weight in the investigation of natural forests. Soil carbon stock did not show a changing trend with stand age, ranging from 254.2 to 420.0 t ha−1 with an average of 358.7 t ha−1. The average value of carbon sequestration potential for these forests was estimated as 29.4 t ha−1, with the lower aged ones being the dominant contributor. The maximum carbon sequestration rate was 2.47 t ha−1 year−1 appearing in the growth stage of 37–56 years. Conclusion The carbon stock in biomass was the major contributor to the increment of carbon stock in ecosystems. Stand age is not a good predictor of soil carbon stocks and accurate evaluation of the soil carbon dynamics thus requires long-term monitoring in situ. The results not only revealed carbon stock status and dynamics in these natural forests but were helpful to understand the role of Natural Forest Protection project in forest carbon sequestration as well.


Sign in / Sign up

Export Citation Format

Share Document