scholarly journals The injury progression of T lymphocytes in a mouse model with subcutaneous injection of a high dose of sulfur mustard

2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Yi-Zhou Mei ◽  
Xiao-Rui Zhang ◽  
Ning Jiang ◽  
Jun-Ping Cheng ◽  
Feng Liu ◽  
...  
2012 ◽  
Vol 32 (2) ◽  
pp. 140-149 ◽  
Author(s):  
Albert Leonard Ruff ◽  
Anthony John Jarecke ◽  
David Joseph Hilber ◽  
Christin Coleen Rothwell ◽  
Sarah Lynn Beach ◽  
...  

2020 ◽  
pp. 1-14
Author(s):  
Yaser H.A. Elewa ◽  
Osamu Ichii ◽  
Teppei Nakamura ◽  
Yasuhiro Kon

Diabetes is a devastating global health problem and is considered a predisposing factor for lung injury progression. Furthermore, previous reports of the authors revealed the role of mediastinal fat-associated lymphoid clusters (MFALCs) in advancing respiratory diseases. However, no reports concerning the role of MFALCs on the development of lung injury in diabetes have been published. Therefore, this study aimed to examine the correlations between diabetes and the development of MFALCs and the progression of lung injury in a streptozotocin-induced diabetic mouse model. Furthermore, immunohistochemical analysis for immune cells (CD3+ T-lymphocytes, B220+ B-lymphocytes, Iba1+ macrophages, and Gr1+ granulocytes), vessels markers (CD31+ endothelial cells and LYVE-1+ lymphatic vessels “LVs”), and inflammatory markers (TNF-α and IL-5) was performed. In comparison to the control group, the diabetic group showed lung injury development with a significant increase in MFALC size, immune cells, LVs, and inflammatory marker, and a considerable decrease of CD31+ endothelial cells in both lung and MFALCs was observed. Furthermore, the blood glucose level showed significant positive correlations with MFALCs size, lung injury, immune cells, inflammatory markers, and LYVE-1+ LVs in lungs and MFALCs. Thus, we suggest that the development of MFALCs and LVs could contribute to lung injury progression in diabetic conditions.


2021 ◽  
Vol 108 (Supplement_1) ◽  
Author(s):  
TF Jones ◽  
A Gutierrez ◽  
del Arroyo ◽  
SM Henson ◽  
GL Ackland

Abstract Introduction Lymphopaenia is common after major surgery and associated with poor outcome. T-lymphocytes restrain damaging innate inflammation. Major surgery impairs T-lymphocyte metabolism in humans, which promotes lymphopaenia. Metformin is known to improve mitochondrial bioenergetics in models of inflammation. Firstly, we hypothesised that a mouse model of major surgery would demonstrate impaired T-lymphocyte metabolism and secondly, that metformin treatment in vivo would reverse the phenotype. Method Male C57Bl/6 mice aged between 8 and 12 weeks were housed in a specific pathogen free environment with free access to food and water. Animals were dosed with either vehicle (phosphate buffered saline, 20 ml/kg) or metformin (250 mg/kg) daily via intraperitoneal injection for four days prior to and after surgery. A partial hepatectomy was performed under isofluorane anaesthesia. Naive littermates were used as controls. All experiments were performed according to the Animals (Scientific Procedures) Act 1986. Splenic T-lymphocytes were isolated by negative selection using magnetic beads. Mitochondrial bioenergetics were measured using a Seahorse Extracellular Flux analyser. Parametric statistical analysis was performed and a p-value < 0.05 was chosen to represent significance. Result T-lymphocytes demonstrated reduced spare respiratory capacity (SRC, 285 vs 497 %, p=0.004) after surgery compared to naive controls. Metformin treatment in vivo reversed this observation and SRC was comparable to naive (437 vs 497 %, p=0.34). Metformin treatment in vitro increased spare respiratory capacity in T-lymphocytes from mice after surgery compared to naive (change from untreated, 187 vs 91 %, p=0.03). Conclusion Perioperative metformin treatment improved T-lymphocyte metabolism in a mouse model of major surgery. Take-home message Metformin is a potential treatment for the lymphocyte metabolic dysfunction observed after surgery.


1996 ◽  
Vol 184 (2) ◽  
pp. 485-492 ◽  
Author(s):  
M A Alexander-Miller ◽  
G R Leggatt ◽  
A Sarin ◽  
J A Berzofsky

Experimental data suggest that negative selection of thymocytes can occur as a result of supraoptimal antigenic stimulation. It is unknown, however, whether such mechanisms are at work in mature CD8+ T lymphocytes. Here, we show that CD8+ effector cytotoxic T lymphocytes (CTL) are susceptible to proliferative inhibition by high dose peptide antigen, leading to apoptotic death mediated by TNF-alpha release. Such inhibition is not reflected in the cytolytic potential of the CTL, since concentrations of antigen that are inhibitory for proliferation promote efficient lysis of target cells. Thus, although CTL have committed to the apoptotic pathway, the kinetics of this process are such that CTL function can occur before death of the CTL. The concentration of antigen required for inhibition is a function of the CTL avidity, in that concentrations of antigen capable of completely inhibiting high avidity CTL maximally stimulate low avidity CTL. Importantly, the inhibition can be detected in both activated and resting CTL. Blocking studies demonstrate that the CD8 molecule contributes significantly to the inhibitory signal as the addition of anti-CD8 antibody restores the proliferative response. Thus, our data support the model that mature CD8+ CTL can accommodate an activation signal of restricted intensity, which, if surpassed, results in deletion of that cell.


PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e96622 ◽  
Author(s):  
Karen Tse ◽  
Sreekanth Puttachary ◽  
Edward Beamer ◽  
Graeme J. Sills ◽  
Thimmasettappa Thippeswamy

Oncotarget ◽  
2020 ◽  
Vol 11 (15) ◽  
pp. 1373-1387
Author(s):  
Marina P. Antoch ◽  
Michelle Wrobel ◽  
Bryan Gillard ◽  
Karen K. Kuropatwinski ◽  
Ilia Toshkov ◽  
...  

2014 ◽  
Vol 151 (1_suppl) ◽  
pp. P72-P72
Author(s):  
Alexander T. Hillel ◽  
Dacheng Ding ◽  
Daryan Namba

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Laura Hesse ◽  
N. van Ieperen ◽  
Arjen H. Petersen ◽  
J. N. G. Oude Elberink ◽  
Antoon J. M. van Oosterhout ◽  
...  

AbstractAllergen-specific immunotherapy (AIT) has the potential to provide long-term protection against allergic diseases. However, efficacy of AIT is suboptimal, while application of high doses allergen has safety concerns. The use of adjuvants, like 1,25(OH)2VitD3 (VitD3), can improve efficacy of AIT. We have previously shown that low dose VitD3 can enhance suppression of airway inflammation, but not airway hyperresponsiveness in a grass pollen (GP)-subcutaneous immunotherapy (SCIT) mouse model of allergic asthma. We here aim to determine the optimal dose and formulation of VitD3 for the GP SCIT. GP-sensitized BALBc/ByJ mice received three SCIT injections of VitD3-GP (30, 100, and 300 ng or placebo). Separately, synthetic lipids, SAINT, was added to the VitD3-GP-SCIT formulation (300 nmol) and control groups. Subsequently, mice were challenged with intranasal GP, and airway hyperresponsiveness, GP-specific IgE, -IgG1, and -IgG2a, ear-swelling responses (ESR), eosinophils in broncho-alveolar lavage fluid and lung were measured. VitD3 supplementation of GP-SCIT dose-dependently induced significantly enhanced suppression of spIgE, inflammation and hyperresponsiveness, while neutralizing capacity was improved and ESR were reduced. Addition of VitD3 further decreased Th2 cytokine responses and innate cytokines to allergens in lung tissue by GP-SCIT. However, addition of synthetic lipids to the allergen/VitD3 mixes had no additional effect on VitD3-GP-SCIT. We find a clear, dose dependent effect of VitD3 on GP-SCIT-mediated suppression of allergic inflammation and airway hyperresponsiveness. In contrast, addition of synthetic lipids to the allergen/VitD3 mix had no therapeutic effect. These studies underscore the relevance of VitD3 as an adjuvant to improve clinical efficacy of SCIT treatment regimens.


Sign in / Sign up

Export Citation Format

Share Document