scholarly journals Predicting students at risk of academic failure using ensemble model during pandemic in a distance learning system

Author(s):  
Halit Karalar ◽  
Ceyhun Kapucu ◽  
Hüseyin Gürüler

AbstractPredicting students at risk of academic failure is valuable for higher education institutions to improve student performance. During the pandemic, with the transition to compulsory distance learning in higher education, it has become even more important to identify these students and make instructional interventions to avoid leaving them behind. This goal can be achieved by new data mining techniques and machine learning methods. This study took both the synchronous and asynchronous activity characteristics of students into account to identify students at risk of academic failure during the pandemic. Additionally, this study proposes an optimal ensemble model predicting students at risk using a combination of relevant machine learning algorithms. Performances of over two thousand university students were predicted with an ensemble model in terms of gender, degree, number of downloaded lecture notes and course materials, total time spent in online sessions, number of attendances, and quiz score. Asynchronous learning activities were found more determinant than synchronous ones. The proposed ensemble model made a good prediction with a specificity of 90.34%. Thus, practitioners are suggested to monitor and organize training activities accordingly.

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 126-127
Author(s):  
Lucas S Lopes ◽  
Christine F Baes ◽  
Dan Tulpan ◽  
Luis Artur Loyola Chardulo ◽  
Otavio Machado Neto ◽  
...  

Abstract The aim of this project is to compare some of the state-of-the-art machine learning algorithms on the classification of steers finished in feedlots based on performance, carcass and meat quality traits. The precise classification of animals allows for fast, real-time decision making in animal food industry, such as culling or retention of herd animals. Beef production presents high variability in its numerous carcass and beef quality traits. Machine learning algorithms and software provide an opportunity to evaluate the interactions between traits to better classify animals. Four different treatment levels of wet distiller’s grain were applied to 97 Angus-Nellore animals and used as features for the classification problem. The C4.5 decision tree, Naïve Bayes (NB), Random Forest (RF) and Multilayer Perceptron (MLP) Artificial Neural Network algorithms were used to predict and classify the animals based on recorded traits measurements, which include initial and final weights, sheer force and meat color. The top performing classifier was the C4.5 decision tree algorithm with a classification accuracy of 96.90%, while the RF, the MLP and NB classifiers had accuracies of 55.67%, 39.17% and 29.89% respectively. We observed that the final decision tree model constructed with C4.5 selected only the dry matter intake (DMI) feature as a differentiator. When DMI was removed, no other feature or combination of features was sufficiently strong to provide good prediction accuracies for any of the classifiers. We plan to investigate in a follow-up study on a significantly larger sample size, the reasons behind DMI being a more relevant parameter than the other measurements.


2009 ◽  
Vol 45 (3) ◽  
pp. 177-185 ◽  
Author(s):  
Jlann H. Munk ◽  
Glrdln S. Gibb ◽  
Paul Caldarella

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Matthijs Blankers ◽  
Louk F. M. van der Post ◽  
Jack J. M. Dekker

Abstract Background Accurate prediction models for whether patients on the verge of a psychiatric criseis need hospitalization are lacking and machine learning methods may help improve the accuracy of psychiatric hospitalization prediction models. In this paper we evaluate the accuracy of ten machine learning algorithms, including the generalized linear model (GLM/logistic regression) to predict psychiatric hospitalization in the first 12 months after a psychiatric crisis care contact. We also evaluate an ensemble model to optimize the accuracy and we explore individual predictors of hospitalization. Methods Data from 2084 patients included in the longitudinal Amsterdam Study of Acute Psychiatry with at least one reported psychiatric crisis care contact were included. Target variable for the prediction models was whether the patient was hospitalized in the 12 months following inclusion. The predictive power of 39 variables related to patients’ socio-demographics, clinical characteristics and previous mental health care contacts was evaluated. The accuracy and area under the receiver operating characteristic curve (AUC) of the machine learning algorithms were compared and we also estimated the relative importance of each predictor variable. The best and least performing algorithms were compared with GLM/logistic regression using net reclassification improvement analysis and the five best performing algorithms were combined in an ensemble model using stacking. Results All models performed above chance level. We found Gradient Boosting to be the best performing algorithm (AUC = 0.774) and K-Nearest Neighbors to be the least performing (AUC = 0.702). The performance of GLM/logistic regression (AUC = 0.76) was slightly above average among the tested algorithms. In a Net Reclassification Improvement analysis Gradient Boosting outperformed GLM/logistic regression by 2.9% and K-Nearest Neighbors by 11.3%. GLM/logistic regression outperformed K-Nearest Neighbors by 8.7%. Nine of the top-10 most important predictor variables were related to previous mental health care use. Conclusions Gradient Boosting led to the highest predictive accuracy and AUC while GLM/logistic regression performed average among the tested algorithms. Although statistically significant, the magnitude of the differences between the machine learning algorithms was in most cases modest. The results show that a predictive accuracy similar to the best performing model can be achieved when combining multiple algorithms in an ensemble model.


2019 ◽  
Author(s):  
Georgy Kopanitsa ◽  
Aleksei Dudchenko ◽  
Matthias Ganzinger

BACKGROUND It has been shown in previous decades, that Machine Learning (ML) has a huge variety of possible implementations in medicine and can be very helpful. Neretheless, cardiovascular diseases causes about third of of all global death. Does ML work in cardiology domain and what is current progress in that regard? OBJECTIVE The review aims at (1) identifying studies where machine-learning algorithms were applied in the cardiology domain; (2) providing an overview based on identified literature of the state of the art of the ML algorithm applying in cardiology. METHODS For organizing this review, we have employed PRISMA statement. PRISMA is a set of items for reporting in systematic reviews and meta-analyses, focused on the reporting of reviews evaluating randomized trials, but can also be used as a basis for reporting systematic review. For the review, we have adopted PRISMA statement and have identified the following items: review questions, information sources, search strategy, selection criteria. RESULTS In total 27 scientific articles or conference papers written in English and reporting about implementation of an ML-method or algorithm in cardiology domain were included in this review. We have examined four aspects: aims of ML-systems, methods, datasets and evaluation metrics. CONCLUSIONS We suppose, this systematic review will be helpful for researchers developing machine-learning system for a medical domain and in particular for cardiology.


2020 ◽  
Author(s):  
F. P. Chmiel ◽  
M. Azor ◽  
F. Borca ◽  
M. J. Boniface ◽  
D. K. Burns ◽  
...  

ABSTRACTShort-term reattendances to emergency departments are a key quality of care indicator. Identifying patients at increased risk of early reattendance can help reduce the number of patients with missed or undertreated illness or injury, and could support appropriate discharges with focused interventions. In this manuscript we present a retrospective, single-centre study where we create and evaluate a machine-learnt classifier trained to identify patients at risk of reattendance within 72 hours of discharge from an emergency department. On a patient hold-out test set, our highest performing classifier obtained an AUROC of 0.748 and an average precision of 0.250; demonstrating that machine-learning algorithms can be used to classify patients, with moderate performance, into low and high-risk groups for reattendance. In parallel to our predictive model we train an explanation model, capable of explaining predictions at an attendance level, which can be used to help inform the design of interventional strategies.


Author(s):  
Danielle Bradley ◽  
Erin Landau ◽  
Adam Wolfberg ◽  
Alex Baron

BACKGROUND The rise of highly engaging digital health mobile apps over the past few years has created repositories containing billions of patient-reported data points that have the potential to inform clinical research and advance medicine. OBJECTIVE To determine if self-reported data could be leveraged to create machine learning algorithms to predict the presence of, or risk for, obstetric outcomes and related conditions. METHODS More than 10 million women have downloaded Ovia Health’s three mobile apps (Ovia Fertility, Ovia Pregnancy, and Ovia Parenting). Data points logged by app users can include information about menstrual cycle, health history, current health status, nutrition habits, exercise activity, symptoms, or moods. Machine learning algorithms were developed using supervised machine learning methodologies, specifically, Gradient Boosting Decision Tree algorithms. Each algorithm was developed and trained using anywhere from 385 to 5770 features and data from 77,621 to 121,740 app users. RESULTS Algorithms were created to detect the risk of developing preeclampsia, gestational diabetes, and preterm delivery, as well as to identify the presence of existing preeclampsia. The positive predictive value (PPV) was set to 0.75 for all of the models, as this was the threshold where the researchers felt a clinical response—additional screening or testing—would be reasonable, due to the likelihood of a positive outcome. Sensitivity ranged from 24% to 75% across all models. When PPV was adjusted from 0.75 to 0.52, the sensitivity of the preeclampsia prediction algorithm rose from 24% to 85%. When PPV was adjusted from 0.75 to 0.65, the sensitivity of the preeclampsia detection or diagnostic algorithm increased from 37% to 79%. CONCLUSIONS Algorithms based on patient-reported data can predict serious obstetric conditions with accuracy levels sufficient to guide clinical screening by health care providers and health plans. Further research is needed to determine whether such an approach can improve outcomes for at-risk patients and reduce the cost of screening those not at risk. Presenting the results of these models to patients themselves could also provide important insight into otherwise unknown health risks.


The field of biosciences have advanced to a larger extent and have generated large amounts of information from Electronic Health Records. This have given rise to the acute need of knowledge generation from this enormous amount of data. Data mining methods and machine learning play a major role in this aspect of biosciences. Chronic Kidney Disease(CKD) is a condition in which the kidneys are damaged and cannot filter blood as they always do. A family history of kidney diseases or failure, high blood pressure, type 2 diabetes may lead to CKD. This is a lasting damage to the kidney and chances of getting worser by time is high. The very common complications that results due to a kidney failure are heart diseases, anemia, bone diseases, high potasium and calcium. The worst case situation leads to complete kidney failure and necessitates kidney transplant to live. An early detection of CKD can improve the quality of life to a greater extent. This calls for good prediction algorithm to predict CKD at an earlier stage . Literature shows a wide range of machine learning algorithms employed for the prediction of CKD. This paper uses data preprocessing,data transformation and various classifiers to predict CKD and also proposes best Prediction framework for CKD. The results of the framework show promising results of better prediction at an early stage of CKD


2011 ◽  
Vol 3 (1) ◽  
pp. 1-12
Author(s):  
Togan Karatas ◽  
Elif Kartal Karatas

The distance learning method has changed the conception of classical education and training. In Turkey the distance learning mission has been undertaken by Anadolu University Open Education Faculty (OEF). Therefore, the presence of OEF in higher education has been considered as the need and demand for higher education through “distance learning system”. However, studying the state’s OEF move “a demand” is not sufficient for an integral analysis. The economic and political structure in the period when OEF was integrated into the education system was critical. In this context, there are significant social dynamics underlying the foundation of OEF as well. In this study, the differences between the distance learning experience in Turkey and other countries are analyzed. Besides the role and share of the OEF in higher education in Turkey is discussed and the socioeconomic reasons of the foundation of the OEF, as specified above, are studied within the framework of the background of the state’s educational move. Finally, the positive and negative views of the individuals on the OEF are presented in the study and suggestions are made in this framework.


Sign in / Sign up

Export Citation Format

Share Document