scholarly journals Screening, identification, and colonization of fungal root endophytes against Dematophora necatrix: a ubiquitous pathogen of fruit trees

2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Joginder Pal ◽  
Satish K. Sharma ◽  
Sunita Devi ◽  
Ranjna Sharma ◽  
Hans Raj ◽  
...  

Abstract The goal of the present research was to ascertain the potential root endophytic fungi against Dematophora necatrix, Hartig, the causal pathogen of white root rot in apples; however, it has an expanded range of hosts across different fruit trees. Out of 36 endophytic fungi segregated from symptomless roots of apple, wheat, maize, marigold, cherry, and garlic plants, only 9 isolates showed inhibitory effect during preliminary screening and were further assayed under in vitro, pot, and field conditions against the white root rot pathogen/disease. Under in vitro conditions, maximum mycelial inhibition of 81.48% was obtained with the isolate Aspergillus aculeatus strain C2. Microscopic studies on interaction between fungal endophyte with hyphal tips of D. necatrix revealed various morphological abnormalities in the hyphae. In glasshouse conditions, seed treatment pursued by soil application with Crinipellis tabtim strain M8 isolate was highly effective and exhibited 93.55% disease control. Similarly, under field conditions, the overall maximum disease control was exhibited by Crinipellis tabtim strain M8 (84.95%). The most promising root endophytes that were identified rely on morphological and ITS sequence analysis. Root colonization assay was performed which revealed maximum endosphere and rhizosphere colonization with Crinipellis tabtim strain M8. Additionally, confocal microscopic illustrations of transverse sections of root cells tenanted by fungal endophytes as compared to untreated control suggested the persistence and establishment of endophytes in the endosphere of apple seedlings. These findings present the first report on colonization of apple roots by fungal root endophytes suggesting an alternative and sustainable approach for management of white root rot disease.

2019 ◽  
Vol 7 (4) ◽  
pp. 102 ◽  
Author(s):  
Linda Rigerte ◽  
Kathrin Blumenstein ◽  
Eeva Terhonen

Many root fungal endophytes inhabiting forest trees have potential impact on the health and disease progression of certain tree species. Hence, the screening of root endophytes for their biocontrol abilities is relevant for their potential to protect their hosts against invaders. The aim of this research is to screen for the potential inhibitory effects of selected conifer root endophytes during interaction, in vitro, with the root rot pathogen, Heterobasidion parviporum. Here, we introduce a guideline that facilitates the use of root fungal endophytes as biocontrol agents. We isolated fungal root endophytes from eight different conifers. These root fungal endophytes were evaluated for their antagonism against the root rot pathogen, H. parviporum, by means of paired-culture antagonism assays. We determined the antagonism of the isolated root fungal endophytes to elucidate potential biocontrol applications. For the analysis, a software package in R was developed. Endophyte candidates with antagonistic potential were identified.


Author(s):  
Zunwei Ke ◽  
Gaolei Cai ◽  
Fan Zhang ◽  
Jianhua Gong ◽  
Yang Zhou ◽  
...  

Plant Disease ◽  
1997 ◽  
Vol 81 (2) ◽  
pp. 180-184 ◽  
Author(s):  
E. A. Milus ◽  
C. S. Rothrock

Pythium root rot, caused by various Pythium spp., is a widespread disease of wheat. The objective of this study was to identify bacterial strains from wheat roots in Arkansas that suppressed Pythium root rot and to compare their efficacy with that of bacterial strains from other areas. Bacterial strains (applied as seed treatments) that suppressed Pythium root rot in growth chamber assays were evaluated further for in vitro antibiosis against three Pythium spp. and for efficacy under field conditions. Pseudomonas fluorescens strain 2-79R, Burkholderia cepacia strain 1-23, and Pseudomonas sp. strain 1-30 were the most effective for suppressing Pythium root rot under field conditions and significantly (P = 0.10) increased yield in one experiment. Strains that were effective in the field also expressed in vitro antibiosis to at least two of three Pythium spp.; however, strains expressing the highest levels of antibiosis were not effective in the field. In the field, root rot suppression and yield enhancement were inconsistent across experiments and generally small in magnitude. Therefore, these strains have little potential for commercial use under the conditions in which they were tested.


2020 ◽  
Vol 46 (3) ◽  
pp. 205-211
Author(s):  
Ciro Hideki Sumida ◽  
Lucas Henrique Fantin ◽  
Karla Braga ◽  
Marcelo Giovanetti Canteri ◽  
Martin Homechin

ABSTRACT Despite the favorable edaphoclimatic conditions for avocado production in Brazil, diseases such as root rot caused by the pathogen Phytophthora cinnamomi compromise the crop. With the aim of managing root rot in avocado, the present study aimed to evaluate chemical and biological control with isolates of Trichoderma spp. and Pseudomonas fluorescens. Thus, three assays were conducted to assess: (i) mycelial inhibition of P. cinnamomi by isolates of Trichoderma spp. and P. fluorescens from different crop systems; (ii) effect of autoclaved and non-autoclaved metabolites of P. fluorescens, and (iii) chemical or biological treatment of avocado seedlings on the control of root rot under field conditions. The isolates of Trichoderma spp. from maize cultivation soil and the commercial products formulated with Trichoderma presented greater antagonism (p <0.05) to the pathogen P. cinnamomi in the in vitro tests. Similarly, non-autoclaved metabolites of P. fluorescens presented antagonistic potential to control P. cinnamomi. Under field conditions, the fungicide metalaxyl and the bioagents showed effectiveness in controlling P. cinnamomi, as well as greater root length and mass. Results demonstrated potential for the biological control of avocado root rot with Trichoderma spp. and P. fluorescens.


Plant Disease ◽  
1998 ◽  
Vol 82 (10) ◽  
pp. 1088-1092 ◽  
Author(s):  
C. J. López-Herrera ◽  
R. M. Pérez-Jiménez ◽  
T. Zea-Bonilla ◽  
M. J. Basallote-Ureba ◽  
J. M. Melero-Vara

Four field experiments on the control of Dematophora necatrix in avocado orchards affected by white root rot were conducted in the Mediterranean coastal area of southern Spain during 1991 to 1994. In the unshaded locations of solarized plots, the maximal temperatures were 35 to 42°C, depending upon the year and soil depth (15 to 60 cm). Temperature increases attributable to soil solarization ranged between 4 and 8°C in unshaded areas, whereas for shaded areas they were approximately 4°C. Inoculum recovery was decreased in root samples buried at 15 to 30 cm in unshaded locations of both solarized and unsolarized plots after 3 to 5 weeks, whereas 4 to 8 weeks of solarization were required for the elimination of the pathogen buried at depths of 45 to 60 cm. In contrast, inoculum recovery ranged from 30 to 60% for samples in shaded locations of unsolarized plots. D. necatrix was not recovered from roots of infected trees in solarized plots sampled 9 months after solarization, whereas recovery from roots in unsolarized plots was similar to levels before solarization. Soil solarization in established orchards was successful in reducing viability of inoculum buried in soil and eliminated inoculum in infected roots of live trees.


Agrikultura ◽  
2016 ◽  
Vol 27 (1) ◽  
Author(s):  
Fitri Widiantini ◽  
Andang Purnama ◽  
Endah Yulia ◽  
Dwindry Formanda

ABSTRACTThe effectiveness of Oligochitosan in Suppressing the Growth of Fungal PathogenRigidoporus lignosus [(Klotzsch) Imazeki] the Causal Agent of White Root Rot Disease of Clovesin VitroWhite root rot disease caused by fungi Rigidoporus lignosus (Klotzch) Imazeki is an important disease of cloves that can cause the death of clove plants. Negative effect on the use of intensive fungicides leads to the search of an alternative method which is more environmentally friendly. Oligochitosan is a natural compound that has antifungal activity and can be used as natural pesticide. This study aimed to determine the concentration of oligochitosan that was able to effectively inhibit R. lignosus mycelial growth and to determine the effect of oligochitosan to R. lignosus mycelial growth. The study used a Completely Randomized Design with 5 oligochitosan concentration treatments (2 g/l, 4 g/l, 6 g/l, 8 g/l and 10 g/l) and control (no treatment). Oligochitosan was diluted with water and mixed with PDA to meet the required concentration. Same concentration was also used to dip wooden toothpick for 1 min and incubated on PDA containing R. lignosus. The result showed that 6 g/l oligochitosan concentration was able to inhibit the mycelial growth of R. lignosus up to 71.6%. Highets inhibition of 100% was demonstrated by oligochitosan at concentration of 8 g/l and 10 g/l. The thinning of mycelial growth on the toothpick and microscopic observation demonstrated that the mycelial of R. lignosus were became lysis.Keywords: Antifungal, Food poisonous, Mycelial growth, LysisAbstrakPenyakit Jamur Akar Putih (JAP) yang disebabkan oleh jamur Rigidoporus lignosus (Klotzch) Imazeki merupakan penyakit penting yang menyerang tanaman cengkeh dan bahkan dapat mengakibatkan kematian tanaman. Pengaruh negatif dari penggunaan fungisida mendorong dilakukan pencarian alternatif pengendalian baru yang lebih ramah lingkungan. Oligochitosan merupakan senyawa alami yang mempunyai aktivitas anti jamur dan dapat digunakan sebagai pestisida nabati. Penelitian ini bertujuan untuk mendapatkan konsentrasi oligochitosan yang dapat secara efektif menghambat pertumbuhan jamur R. lignosus dan mengetahui pengaruh oligochitosan terhadap miselia jamur R. lignosus. Percobaan dilakukan dengan menggunakan rancangan acak lengkap dengan perlakuan terdiri dari 5 konsentrasi oligochitosan (2 g/l, 4 g/l, 6 g/l, 8 g/l dan 10 g/l) dan kontrol (tanpa oligochitosan). Oligochitosan dilarutan dalam air dan dicampur dengan PDA sehingga diperoleh konsentrasi yang diuji. Konsentrasi yang sama juga digunakan untuk merendam tusuk gigi selama 1 menit dan diinkubasikan dalam cawan petri yang sebelumnya sudah ditumbuhi oleh R. lignosus. Hasil penelitian menunjukkan bahwa oligochitosan pada konsentrasi 6 g/l menghambat pertumbuhan jamur R. lignosus sebesar 71,6%. Sementara penghambatan tertinggi sebesar 100% diperoleh pada perlakuan oligochitosan dengan konsentrasi8 g/l dan 10 g/l. Penipisan koloni jamur R. lignosus pada tusuk gigi dan pengamatan di bawahmikroskop menunjukkan bahwa oligochitosan menyebabkan lisis pada miselia jamur R. lignosus.Kata kunci: Anti jamur, Umpan beracun, Pertumbuhan koloni, Lisis


2011 ◽  
Vol 3 (4) ◽  
pp. 79-87 ◽  
Author(s):  
Mohamed Yosseif MOUBARK ◽  
Montaser Fawzy ABDEL-MONAIM

This study evaluated the effectiveness of applying the bioagents Bacillus subtilis (isolate BSM1), B. megaterium (isolate BMM5), Trichoderma viride (isolate TVM2) and T. harzianum (isolate THM4) for the control of rot root disease caused by Fusarium graminearum, Drechslera halodes and Rhizoctonia solani on two wheat cultivars ('Sakha 93' and 'Bani Suif 5') under greenhouse conditions. Moreover, their effect wheat growth and yield were also studied under field conditions. In vitro, all tested bioagents were significantly in the reduced redial growth of the pathogenic fungi. Trichoderma viride was active more than the other tested bioagents followed by T. harzianum, while B. subtilis was the least ones. Under greenhouse conditions, all tested bioagents were able to reduce significantly damping-off and root rot caused by the tested pathogens compared with control and increased fresh and dry weight of the survival plants when applied as soil or grain treatments however, there was variation among bioagent isolates effect on reduction of disease severity both application methods. Trichoderma viride and B. megaterium were recorded the highest effective in this respect compared with other tested bioagents. Under field conditions, analysis of variance and mean performance were estimated for four characters: grain yield 4.8 m-2, No. of spikes m-2, No. of kernels spike-1 and 1,000-kernel weight. Significant mean squares were obtained for all studied characters between the seasons (S), methods (M), (S) (M), treatments (T), (S) (T), (M) (T) and (S) (M) (T) for 'Sakha 93' cultivar and 'Bani Suif 5' cultivar except application methods and (S) (M) for number of kernels spike-1 and 1,000-kernel weight, respectively. While the treatments T. harzianum and B. megaterium were the best treatments to increase grain yield, the treatments B. subtilis and T. harzianum were best treatments to increase number of spikes and the treatments B. subtilis and B. megaterium were best treatments to increase number of kernels for soil and grain application methods, respectively.


Author(s):  
Duong Thi Nguyen ◽  
Nguyen Chi Hieu ◽  
Nguyen Viet Hung ◽  
Hoang Thi Bich Thao ◽  
Chetan Keswani ◽  
...  

Abstract Background Fusarium root rot disease in Indian mulberry (Morinda officinalis How.) (FRRBK), caused by Fusarium proliferatum (FP), is widespread and responsible for serious economic losses in Viet Nam. The efficacy of a new bio-product named MICROTECH-1(NL) is compared with other commercial products for suppression of FP under in vitro, pot, nursery as well as in the field conditions. Results In in vitro antagonistic assay, MICROTECH-1(NL) significantly inhibited the mycelial growth of FP (72.38%). Under pot conditions, the efficacy of all the bio-products was significantly higher when applied prior to pathogen inoculation. The disease severity of treatments with double application of MICROTECH-1(NL) (applied both in the nursery and in the pot soil) was only 15.56%, significantly lower than control (80%). Thus, the application of MICROTECH-1(NL) significantly reduced the incidence of FP and markedly increased the number of plant beneficial bacteria and actinobacteria in rhizoplane of M. officinalis compared to untreated control. In the field conditions, double application of MICROTECH-1(NL) (both in the nursery and in the field soils) significantly decreased disease severity in comparison to single application in nursery or field. Conclusion The most effective treatment was double application of MICROTECH-1(NL), which significantly reduced the disease severity and FP population in roots of M. officinalis and increased the population of plant beneficial microbes.


Sign in / Sign up

Export Citation Format

Share Document