scholarly journals Expression of miR159 Is Altered in Tomato Plants Undergoing Drought Stress

Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 201 ◽  
Author(s):  
María José López-Galiano ◽  
Inmaculada García-Robles ◽  
Ana I. González-Hernández ◽  
Gemma Camañes ◽  
Begonya Vicedo ◽  
...  

In a scenario of global climate change, water scarcity is a major threat for agriculture, severely limiting crop yields. Therefore, alternatives are urgently needed for improving plant adaptation to drought stress. Among them, gene expression reprogramming by microRNAs (miRNAs) might offer a biotechnologically sound strategy. Drought-responsive miRNAs have been reported in many plant species, and some of them are known to participate in complex regulatory networks via their regulation of transcription factors involved in water stress signaling. We explored the role of miR159 in the response of Solanum lycopersicum Mill. plants to drought stress by analyzing the expression of sly-miR159 and its target SlMYB transcription factor genes in tomato plants of cv. Ailsa Craig grown in deprived water conditions or in response to mechanical damage caused by the Colorado potato beetle, a devastating insect pest of Solanaceae plants. Results showed that sly-miR159 regulatory function in the tomato plants response to distinct stresses might be mediated by differential stress-specific MYB transcription factor targeting. sly-miR159 targeting of SlMYB33 transcription factor transcript correlated with accumulation of the osmoprotective compounds proline and putrescine, which promote drought tolerance. This highlights the potential role of sly-miR159 in tomato plants’ adaptation to water deficit conditions.

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hong Wang ◽  
Aiping Duan ◽  
Jing Zhang ◽  
Qi Wang ◽  
Yuexian Xing ◽  
...  

AbstractElucidating transcription mediated by the glucocorticoid receptor (GR) is crucial for understanding the role of glucocorticoids (GCs) in the treatment of diseases. Podocyte is a useful model for studying GR regulation because GCs are the primary medication for podocytopathy. In this study, we integrated data from transcriptome, transcription factor binding, histone modification, and genome topology. Our data reveals that the GR binds and activates selective regulatory elements in podocyte. The 3D interactome captured by HiChIP facilitates the identification of remote targets of GR. We found that GR in podocyte is enriched at transcriptional interaction hubs and super-enhancers. We further demonstrate that the target gene of the top GR-associated super-enhancer is indispensable to the effective functioning of GC in podocyte. Our findings provided insights into the mechanisms underlying the protective effect of GCs on podocyte, and demonstrate the importance of considering transcriptional interactions in order to fine-map regulatory networks of GR.


Endocrinology ◽  
2014 ◽  
Vol 155 (8) ◽  
pp. 2966-2975 ◽  
Author(s):  
Kristian Rohde ◽  
Louise Rovsing ◽  
Anthony K. Ho ◽  
Morten Møller ◽  
Martin F. Rath

The cone-rod homeobox (Crx) gene encodes a transcription factor in the retina and pineal gland. Crx deficiency influences the pineal transcriptome, including a reduced expression of arylalkylamine N-acetyltransferase (Aanat), a key enzyme in nocturnal pineal melatonin production. However, previous functional studies on pineal Crx have been performed in melatonin-deficient mice. In this study, we have investigated the role of Crx in the melatonin-proficient rat pineal gland. The current study shows that pineal Crx transcript levels exhibit a circadian rhythm with a peak in the middle of the night, which is transferred into daily changes in CRX protein. The study further shows that the sympathetic innervation of the pineal gland controls the Crx rhythm. By use of adenovirus-mediated short hairpin RNA gene knockdown targeting Crx mRNA in primary rat pinealocyte cell culture, we here show that intact levels of Crx mRNA are required to obtain high levels of Aanat expression, whereas overexpression of Crx induces Aanat transcription in vitro. This regulatory function of Crx is further supported by circadian analysis of Aanat in the pineal gland of the Crx-knockout mouse. Our data indicate that the rhythmic nature of pineal CRX protein may directly modulate the daily profile of Aanat expression by inducing nighttime expression of this enzyme, thus facilitating nocturnal melatonin synthesis in addition to its role in ensuring a correct tissue distribution of Aanat expression.


2012 ◽  
Vol 169 (5) ◽  
pp. 509-515 ◽  
Author(s):  
Lourdes Gómez-Gómez ◽  
Almudena Trapero-Mozos ◽  
Maria Dolores Gómez ◽  
Angela Rubio-Moraga ◽  
Oussama Ahrazem

2012 ◽  
Vol 448 (3) ◽  
pp. 353-363 ◽  
Author(s):  
Mi Jung Kim ◽  
Mi-Jeong Park ◽  
Pil Joon Seo ◽  
Jin-Su Song ◽  
Hie-Joon Kim ◽  
...  

Controlled proteolytic activation of membrane-anchored transcription factors provides an adaptation strategy that guarantees rapid transcriptional responses to abrupt environmental stresses in both animals and plants. NTL6 is a plant-specific NAC [NAM/ATAF1/2/CUC2] transcription factor that is expressed as a dormant plasma membrane-associated form in Arabidopsis. Proteolytic processing of NTL6 is triggered by abiotic stresses and ABA (abscisic acid). In the present study, we show that NTL6 is linked directly with SnRK (Snf1-related protein kinase) 2.8-mediated signalling in inducing a drought-resistance response. SnRK2.8 phosphorylates NTL6 primarily at Thr142. NTL6 phosphorylation by SnRK2.8 is required for its nuclear import. Accordingly, a mutant NTL6 protein, in which Thr142 was mutated to an alanine, was poorly phosphorylated and failed to enter the nucleus. In accordance with the role of SnRK2.8 in drought-stress signalling, transgenic plants overproducing either NTL6 or its active form 6ΔC (35S:NTL6 and 35S:6ΔC) exhibited enhanced resistance to water-deficit conditions such as those overproducing SnRK2.8 (35S:SnRK2.8). In contrast, NTL6 RNAi (RNA interference) plants were susceptible to dehydration as observed in the SnRK2.8-deficient snrk2.8-1 mutant. Furthermore, the dehydration-resistant phenotype of 35S:NTL6 transgenic plants was compromised in 35S:NTL6 X snrk2.8-1 plants. These observations indicate that SnRK2.8-mediated protein phosphorylation, in addition to a proteolytic processing event, is important for NTL6 function in inducing a drought-resistance response.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kaiwen Lv ◽  
Hairong Wei ◽  
Guifeng Liu

Drought stress causes various negative impacts on plant growth and crop production. R2R3-MYB transcription factors (TFs) play crucial roles in the response to abiotic stress. However, their functions in Betula platyphylla haven’t been fully investigated. In this study, a R2R3 MYB transcription factor gene, BpMYB123, was identified from Betula platyphylla and reveals its significant role in drought stress. Overexpression of BpMYB123 enhances tolerance to drought stress in contrast to repression of BpMYB123 by RNA interference (RNAi) in transgenic experiment. The overexpression lines increased peroxidase (POD) and superoxide dismatase (SOD) activities, while decreased hydrogen peroxide (H2O2), superoxide radicals (O2–), electrolyte leakage (EL) and malondialdehyde (MDA) contents. Our study showed that overexpression of BpMYB123 increased BpLEA14 gene expression up to 20-fold due to BpMYB123 directly binding to the MYB1AT element of BpLEA14 promoter. These results indicate that BpMYB123 acts as a regulator via regulating BpLEA14 to improve drought tolerance in birch.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8473
Author(s):  
Xinling Hu ◽  
Lisha Zhang ◽  
Iain Wilson ◽  
Fenjuan Shao ◽  
Deyou Qiu

The MYB transcription factor family is one of the largest gene families playing regulatory roles in plant growth and development. The MYB family has been studied in a variety of plant species but has not been reported in Taxus chinensis. Here we identified 72 putative R2R3-MYB genes in T. chinensis using a comprehensive analysis. Sequence features, conversed domains and motifs were characterized. The phylogenetic analysis showed TcMYBs and AtMYBs were clustered into 36 subgroups, of which 24 subgroups included members from T. chinensis and Arabidopsis thaliana, while 12 subgroups were specific to one species. This suggests the conservation and specificity in structure and function of plant R2R3-MYBs. The expression of TcMYBs in various tissues and different ages of xylem were investigated. Additionally, miRNA-mediated posttranscriptional regulation analysis revealed that TcMYBs were the targets of miR858, miR159 and miR828, suggesting the posttranscriptional regulation of MYBs is highly conserved in plants. The results provide a basis for further study the role of TcMYBs in the regulation of secondary metabolites of T. chinensis.


1985 ◽  
Vol 21 (3) ◽  
pp. 209-222 ◽  
Author(s):  
J. D. H. Keatinge ◽  
P. J. H. Neate ◽  
K. D. Shepherd

SUMMARYThe development and influence of crop drought stress was examined in winter-planted small-grain cereals under Mediterranean environmental conditions. In two average or wetter than average years crop drought stress in the grain-filling period was greatly exacerbated by the addition of fertilizer (N and P) and this usually resulted in significantly lower kernel weights. Yet this reduction was not so substantial as to seriously affect crop yields. Total grain yields were largest in treatments receiving fertilizer, due to greater spike numbers and numbers of kernels per spike. But heavy nitrogen applications may promote the risk of a large proportion of small or shrivelled grains in a dry year.


2017 ◽  
Author(s):  
Anupama Prakash ◽  
Antónia Monteiro

AbstractButterflies have evolved different color patterns on their dorsal and ventral wing surfaces to serve different signaling functions, yet the developmental mechanisms controlling surface-specific patterning are still unknown. Here, we mutate both copies of the transcription factor apterous in Bicyclus anynana butterflies using CRISPR/Cas9 and show that apterous A functions both as a repressor and modifier of ventral wing color patterns, as well as a promoter of dorsal sexual ornaments in males. We propose that the surface-specific diversification of wing patterns in butterflies proceeded via the co-option of apterous A into various gene regulatory networks involved in the differentiation of discrete wing traits. Further, interactions between apterous and sex-specific factors such as doublesex may have contributed to the origin of sexually dimorphic surface-specific patterns. Finally, we discuss the evolution of eyespot pattern diversity in the family Nymphalidae within the context of developmental constraints due to apterous regulation.Significance statementButterflies have evolved different wing patterns on their dorsal and ventral wing surfaces that serve different signaling functions. We identify the transcription factor, apterous A, as a key regulator of this surface-specific differentiation in butterflies. We also show a role for apterous A in restricting the developmental origin of a novel trait, eyespots, to just the ventral wing surface. Dorsal-ventral differentiation of tissues is not just restricted to butterfly wings but occurs in many other organs and organisms from arthropods to humans. Thus, we believe that our work will be of interest to a diverse group of biologists and layman alike interested in the role of development in shaping biodiversity.


Sign in / Sign up

Export Citation Format

Share Document