scholarly journals Evaluation of in vitro cytotoxic activity of different solvent extracts of Clerodendrum thomsoniae Balf.f and its active fractions on different cancer cell lines

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
V. K. Muhammed Ashraf ◽  
V. K. Kalaichelvan ◽  
V. V. Venkatachalam ◽  
R. Ragunathan

AbstractBackgroundClerodendrumis a genus of about 500 species belongs to the family Lamiaceae. Many species of this genus have been proved for the treatment of various diseases. This study was aimed to evaluate the cytotoxic effect of different solvents and their most active fractions ofClerodendrum thomsoniaeBalf.f. in different human cancer cell lines. Aerial parts of the plant were subjected to Soxhlet extraction. Phytochemical analysis was done by using standard tests. In vitro anti-cancer activity on MCF-7, Hep-G2, A549, HT-29, MOLT-4, Hela, and Vero cell lines were evaluated by MTT assay.ResultsPhytochemical analysis confirmed the presence of most of the phytoconstituents in ethyl acetate extracts and the same extracts were found to be more cytotoxic activity to cancer cell lines MCF-7,Hep-G2,A549,HT–29, MOLT-4, and Hela with IC50values 29.43 ± 1.44 μg/ml, 43.22 ± 1.02 μg/ml, 56.93 ± 1.41 μg/ml, 60.68 ± 1.05 μg/ml, 69.83 ± 1.33 μg/ml, and 40.02 ± 1.14 μg/ml respectively, while it had no cytotoxic effect on normal Vero cells IC50= 367.5 ± 1.03 μg/ml. Ethyl acetate extracts were selected for the fractionation and MCF-7 cell line was used repeat MTT assay and found that fraction F5 was the most active fraction with IC5017.33 ± 0.54 μg/ml.ConclusionThese findings have proved thatClerodendrum thomsoniaeBalf.f. have significant cytotoxicity especially for breast cancer cell lines. Further studies are required for the isolation of constituents and to explore the mechanism of action.

2018 ◽  
Vol 23 ◽  
pp. 2515690X1879072 ◽  
Author(s):  
Sylvester Languon ◽  
Isaac Tuffour ◽  
Emmanuel Ekow Quayson ◽  
Regina Appiah-Opong ◽  
Osbourne Quaye

There are numerous herbal products on the Ghanaian market that are purported to cure various ailments, including cancer. However, scientific investigations on efficacy and toxicity of most of these products are not done. The aim of the study was to assess the anticancer potentials of herbal products on the Ghanaian market. Antiproliferative effects of Kantinka BA (K-BA), Kantinka Herbaltics (K-HER), Centre of Awareness (COA), a stomach (STO) and multicancer (MUT) product were evaluated in vitro using liver (Hep G2), breast (MCF-7), prostate (PC-3 and LNCaP), and blood (Jurkat) cancer cell lines. Cytotoxicity of the medicinal products was assessed using tetrazolium-based colorimetric assay, and total phenolic content and antioxidant activity of the products were determined using Folin-Ciocalteau and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays, respectively. Phytochemical screening resulted in the detection of terpenoids and flavonoids in most of the products, and alkaloids were detected in only MUT. Tannins were absent from all the products. The highest and lowest concentrations of phenolics were recorded for MUT and K-BA, respectively. The highest and lowest antioxidant activities were measured for MUT and K-HER, respectively. Only 2 products (STO and MUT) were cytotoxic to Hep G2 cells; with MUT being the only product that was cytotoxic to MCF-7 cells. All but K-BA were cytotoxic to PC-3 cells, while all products except K-HER were cytotoxic to LNCaP and Jurkat cells. The study thus confirms that the herbal products have selective cytotoxic activities against the tested cancer cell lines. However, comprehensive toxicity studies must be conducted to establish their safety.


2020 ◽  
Vol 58 (1) ◽  
pp. 12
Author(s):  
Tran Khac Vu

The paper presents a simple synthesis of new quinazolinone derivatives 13a-i. Synthesized derivatives were tested for their cytotoxic effect against three cancer cell lines including SKLU-1, MCF-7 and HepG-2. The bioassay result showed that only compound 13e exhibited significant cytotoxic effect against cancer cell lines tested with IC50 values of 9.48, 20.39 and 18.04 µg/ mL, respectively.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9910
Author(s):  
Sarah Albogami

Background Growing evidence indicates that proanthocyanidins (PACs) may be effective in treating and preventing various cancers. The fundamental mechanism of PACs inhibiting the proliferation at cellular and molecular levels in most of the cancer types remains unclear. Objective The anticancer efficacy of PACs was investigated in vitro using three human cancer cell lines: human colorectal adenocarcinoma (HT-29), human breast carcinoma (MCF-7), and human prostatic adenocarcinoma (PC-3). Methods Cytotoxicity was evaluated by MTT assay, while cell proliferation was measured by trypan blue exclusion method. Cell migration was measured by wound healing assay, and DAPI staining was used to evaluate apoptotic nucleus morphology. RT-PCR was used to analyze the expression of Bax and Bcl-2, and caspase enzyme activity assay was measured by caspase colorimetric assay. Results PACs could inhibit both cellular viability and proliferation in a concentration- and time-dependent fashion in all investigated cells. Further, all tested cells showed similarly decreased migration after 24- and 48-h PAC treatment. We observed increased apoptotic nucleus morphology in treated cells (p ≤ 0.01). BAX expression significantly increased in HT-29 (p < 0.01), PC-3(p < 0.01), and MCF-7 (p < 0.05) cells, while BCL-2 expression significantly declined (p < 0.05). Caspase activities were significantly increased in all tested cancer cell lines after 24-h PAC treatment. Conclusion PACs may have potential therapeutic properties against colorectal, breast, and prostate cancer.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Balwinder Singh ◽  
Vishal Sharma ◽  
Gagandeep Singh ◽  
Rakesh Kumar ◽  
Saroj Arora ◽  
...  

Novel substituted chromenopyridones (3a–j and 6a–d) were synthesized and evaluated in vitro for the cytotoxic activity against various human cancer cell lines such as prostate (PC-3), breast (MCF-7), CNS (IMR-32), cervix (Hela), and liver (Hep-G2). preliminary cytotoxic screening showed that all the compounds possess a good to moderate inhibitory activity against various cancer cell lines. Particularly, compound 6b bearing allyl moiety displayed a significant cytotoxic potential in comparison to standard drugs.


2018 ◽  
Vol 40 (2) ◽  
pp. 145-152
Author(s):  
Vu Thi Nguyet ◽  
Nguyen Tien Dat ◽  
Le Mai Huong ◽  
Tran Thi Hong Ha ◽  
Nguyen Hong Chuyen ◽  
...  

This paper reports the cytotoxic effect on several cancer cell lines of the stem extracts and of some isolated compounds from Ehretia asperula. All the extracts exhibited cytotoxic effects on at least one cancer cell line. The n-hexane extract showed potent cytotoxic activity on Hep-G2, MCF-7 and HeLa cell lines with IC50 values of 28.3 g/ml, 14.42 g/ml and 18.59 g/ml, respectively, while the methanolic, ethyl acetate and water extracts exhibited toxicity towards MCF-7 cells with IC50 values of 16.45 g/ml, 13.4 g/ml and 39.78 g/ml, respectively. 06 compounds have been isolated from the ethyl acetate fraction of Ehretia asperula stem. Methyl caffeate has a strong cytotoxicity against Hep-G2, HeLa and MCF-7 cancer cell lines with IC50 values of 2.83 g/ml, 3.38 g/ml and 4.4 g/ml, respectively. Oresbiusin B was active against Hep-G2 with IC50 value of 9.89 g/ml. The other compounds including coniferaldehyde, 9′-methoxydehydrodiconiferyl alcohol and vanillic acid did not have any cytotoxic effect on the tested cancer cell lines. So, the obtained results have suggested possibility of using the potential Ehretia asperula extracts as health food for preventing and curing cancer diseases. Keywords: Ehretia asperula, methyl caffeate, oresbiusin B, Cancer cell lines. Citation: Vu Thi Nguyet, Nguyen Tien Đat, Le Mai Huong, Tran Thi Hong Ha, Nguyen Hong Chuyen, Nguyen Thi Hang4, Đang Đinh Kim, 2018. Evaluating cytotoxic effect of the extracted compounds from ehretia asperula zoll. & mor stem on several cancer cell lines.Tap chi Sinh hoc, 40(2): 145153. https://doi.org/10.15625/0866-7160/v40n2.12955. *Corresponding author: [email protected]


2020 ◽  
Vol 19 (16) ◽  
pp. 2010-2018
Author(s):  
Youstina W. Rizzk ◽  
Ibrahim M. El-Deen ◽  
Faten Z. Mohammed ◽  
Moustafa S. Abdelhamid ◽  
Amgad I.M. Khedr

Background: Hybrid molecules furnished by merging two or more pharmacophores is an emerging concept in the field of medicinal chemistry and drug discovery. Currently, coumarin hybrids have attracted the keen attention of researchers to discover their therapeutic capability against cancer. Objective: The present study aimed to evaluate the in vitro antitumor activity of a new series of hybrid molecules containing coumarin and quinolinone moieties 4 and 5 against four cancer cell lines. Materials and Methods: A new series of hybrid molecules containing coumarin and quinolinone moieties, 4a-c and 5a-c, were synthesized and screened for their cytotoxicity against prostate PC-3, breast MCF-7, colon HCT- 116 and liver HepG2 cancer cell lines as well as normal breast Hs-371 T. Results: All the synthesized compounds were assessed for their in vitro antiproliferative activity against four cancer cell lines and several compounds were found to be active. Further in vitro cell cycle study of compounds 4a and 5a revealed MCF-7 cells arrest at G2 /M phase of the cell cycle profile and induction apoptosis at pre-G1 phase. The apoptosis-inducing activity was evidenced by up-regulation of Bax protein together with the downregulation of the expression of Bcl-2 protein. The mechanism of cytotoxic activity of compounds 4a and 5a correlated to its topoisomerase II inhibitory activity. Conclusion: Hybrid molecules containing coumarin and quinolinone moieties represents a scaffold for further optimization to obtain promising anticancer agents.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3923
Author(s):  
Adel A.-H. Abdel-Rahman ◽  
Amira K. F. Shaban ◽  
Ibrahim F. Nassar ◽  
Dina S. EL-Kady ◽  
Nasser S. M. Ismail ◽  
...  

New pyridine, pyrazoloyridine, and furopyridine derivatives substituted with naphthyl and thienyl moieties were designed and synthesized starting from 6-(naphthalen-2-yl)-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3-carbonitrile (1). The chloro, methoxy, cholroacetoxy, imidazolyl, azide, and arylamino derivatives were prepared to obtain the pyridine-−C2 functionalized derivatives. The derived pyrazolpyridine-N-glycosides were synthesized via heterocyclization of the C2-thioxopyridine derivative followed by glycosylation using glucose and galactose. The furopyridine derivative 14 and the tricyclic pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine 15 were prepared via heterocyclization of the ester derivative followed by a reaction with formamide. The newly synthesized compounds were evaluated for their ability to in vitro inhibit the CDK2 enzyme. In addition, the cytotoxicity of the compounds was tested against four different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549). The CDK2/cyclin A2 enzyme inhibitory results revealed that pyridone 1, 2-chloro-6-(naphthalen-2-yl)-4-(thiophen-2-yl)nicotinonitrile (4), 6-(naphthalen-2-yl)-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (8), S-(3-cyano-6-(naphthaen-2-yl)-4-(thiophen-2-yl)pyridin-2-yl) 2-chloroethanethioate (11), and ethyl 3-amino-6-(naphthalen-2-yl)-4-(thiophen-2-yl)furo[2,3-b]pyridine-2-carboxylate (14) are among the most active inhibitors with IC50 values of 0.57, 0.24, 0.65, 0.50, and 0.93 µM, respectively, compared to roscovitine (IC50 0.394 μM). Most compounds showed significant inhibition on different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549) with IC50 ranges of 31.3–49.0, 19.3–55.5, 22.7–44.8, and 36.8–70.7 μM, respectively compared to doxorubicin (IC50 40.0, 64.8, 24.7 and 58.1 µM, respectively). Furthermore, a molecular docking study suggests that most of the target compounds have a similar binding mode as a reference compound in the active site of the CDK2 enzyme. The structural requirements controlling the CDK2 inhibitory activity were determined through the generation of a statistically significant 2D-QSAR model.


Author(s):  
Muhammad Luqman Nordin ◽  
Arifah Abdul Kadir ◽  
Zainul Amiruddin Zakaria ◽  
Rasedee Abdullah ◽  
Muhammad Nazrul Hakim Abdullah

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Shengxian Zhao ◽  
Yin Cao ◽  
Zhenzhen Cui ◽  
Jiayun Zhang ◽  
Zhixiang Pan ◽  
...  

A series of 2-arylidene-N-(quinolin-6-yl)hydrazine-1-carboxamides 5a–5o were synthesized and characterized. The synthesized compounds (5a–5o) were screened in vitro against three breast cancer cell lines: SKBR3, MDA-MB-231, and MCF-7 cancer cell lines by the MTT assay. According to MTT results, compounds 5k and 5l showed better antiproliferative activities over MCF-7 cell lines with IC50 values of 8.50 and 12.51 μM. Colony formation assay indicated 5k/5l treatment obviously inhibited the growth of MCF-7 cells and 5k/5l-induced cell cycle was arrested in the G2-M phase. Moreover, 5k/5l significantly increased the level of cleaved PARP and induced the apoptosis in MCF-7 cells. In addition, compared to Hela cells, MCF-7 cells were more sensitive to 5k/5l treatment.


Sign in / Sign up

Export Citation Format

Share Document