scholarly journals Analysing the impact of the two most common SARS-CoV-2 nucleocapsid protein variants on interactions with membrane protein in silico

Author(s):  
Syeda Tasnim Quayum ◽  
Saam Hasan

AbstractAs the body of scientific research focusing on the severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 continues to grow, several mutations have been reported as very common across the globe. In this study, we analysed the SARS-CoV-2 nucleocapsid protein (N protein) with respect to the widely observed 28881-28883 GGG to AAC variant. One of the major functions of the SARS-CoV-2 nucleocapsid protein is virion packaging through its interactions with the membrane protein (M protein). Our goal was to investigate, using in silico studies, the interaction between the mutant nucleocapsid protein and the M protein and how it differed from that of wild type N-M protein interaction. The results showed significant differences in interactions between the two. The mutant protein was predicted to form 3 salt bridges with the M protein, while the wild type only formed 2. The mutant protein was also predicted to display less temperature sensitivity than its wild type counterpart.

2022 ◽  
Author(s):  
Gayathri Sambamoorthy ◽  
Karthik Raman

Microbes thrive in communities, embedded in a complex web of interactions. These interactions, particularly metabolic interactions, play a crucial role in maintaining the community structure and function. As the organisms thrive and evolve, a variety of evolutionary processes alter the interactions among the organisms in the community, although the community function remains intact. In this work, we simulate the evolution of two-member microbial communities in silico to study how evolutionary forces can shape the interactions between organisms. We employ genomescale metabolic models of organisms from the human gut, which exhibit a range of interaction patterns, from mutualism to parasitism. We observe that the evolution of microbial interactions varies depending upon the starting interaction and also on the metabolic capabilities of the organisms in the community. We find that evolutionary constraints play a significant role in shaping the dependencies of organisms in the community. Evolution of microbial communities yields fitness benefits in only a small fraction of the communities, and is also dependent on the interaction type of the wild-type communities. The metabolites cross-fed in the wild-type communities appear in only less than 50% of the evolved communities. A wide range of new metabolites are cross-fed as the communities evolve. Further, the dynamics of microbial interactions are not specific to the interaction of the wild-type community but vary depending on the organisms present in the community. Our approach of evolving microbial communities in silico provides an exciting glimpse of the dynamics of microbial interactions and offers several avenues for future investigations.


2021 ◽  
Vol 17 ◽  
Author(s):  
Thiago M. de Aquino ◽  
Paulo H. B. França ◽  
Érica E. E. S. Rodrigues ◽  
Igor J. S. Nascimento ◽  
Paulo F. S. Santos-Júnior ◽  
...  

Background: Leishmaniasis is a worldwide health problem, highly endemic in developing countries. Among the four main clinical forms of the disease, visceral leishmaniasis is the most severe, fatal in 95% of cases. The undesired side-effects from first-line chemotherapy and the reported drug resistance search for effective drugs that can replace or supplement those currently used an urgent need. Aminoguanidine hydrazones (AGH's) have been explored for exhibiting a diverse spectrum of biological activities, in particular the antileishmanial activity of MGBG. The bioisosteres thiosemicarbazones (TSC's) offer a similar biological activity diversity, including antiprotozoal effects against Leishmania species and Trypanosoma cruzi. Objective: Considering the impact of leishmaniasis worldwide, this work aimed to design, synthesize, and perform a screening upon L. chagasi amastigotes and for the cytotoxicity of the small "in-house" library of both AGH and TSC derivatives and their structurally-related compounds. Method: A set of AGH's (3-7), TSC's (9, 10), and semicarbazones (11) were initially synthesized. Subsequently, different semi-constrained analogs were designed and also prepared, including thiazolidines (12), dihydrothiazines (13), imidazolines (15), pyrimidines (16, 18) azines (19, 20), and benzotriazepinones (23-25). All intermediates and target compounds were obtained with satisfactory yields and exhibited spectral data consistent with their structures. All final compounds were evaluated against L. chagasi amastigotes and J774.A1 cell line. Molecular docking was performed towards trypanothione reductase using GOLD® software. Result: The AGH's 3i, 4a, and 5d, and the TSC's 9i, 9k, and 9o were selected as valuable hits. These compounds presented antileishmanial activity compared with pentamidine, showing IC50 values ranged from 0.6 to 7.27 μM, maximal effects up to 55.3%, and satisfactory SI values (ranged from 11 to 87). On the other hand, most of the resulting semi-constrained analogs were found cytotoxic or presented reduced antileishmanial activity. In general, TSC class is more promising than its isosteric AGH analogs, and the beneficial aromatic substituent effects are not similar in both series. In silico studies have suggested that these hits are capable of inhibiting the trypanothione reductase from the amastigote forms. Conclusion: The promising antileishmanial activity of three AGH’s and three TSC’s was characterized. These compounds presented antileishmanial activity compared with PTD, showing IC50 values ranged from 0.6 to 7.27 μM, and satisfactory SI values. Further pharmacological assays involving other Leishmania strains are under progress, which will help to choose the best hits for in vivo experiments.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Tugba G. Kucukkal ◽  
Emil Alexov

Rett Syndrome (RTT) is a progressive neurodevelopmental disease affecting females. RTT is caused by mutations in theMECP2gene and various amino acid substitutions have been identified clinically in different domains of the multifunctional MeCP2 protein encoded by this gene. The R133C variant in the methylated-CpG-binding domain (MBD) of MeCP2 is the second most common disease-causing mutation in the MBD. Comparative molecular dynamics simulations of R133C mutant and wild-type MBD have been performed to understand the impact of the mutation on structure, dynamics, and interactions of the protein and subsequently understand the disease mechanism. Two salt bridges within the protein and two critical hydrogen bonds between the protein and DNA are lost upon the R133C mutation. The mutation was found to weaken the interaction with DNA and also cause loss of helicity within the 141-144 region. The structural, dynamical, and energetical consequences of R133C mutation were investigated in detail at the atomic resolution. Several important implications of this have been shown regarding protein stability and hydration dynamics as well as its interaction with DNA. The results are in agreement with previous experimental studies and further provide atomic level understanding of the molecular origin of RTT associated with R133C variant.


2019 ◽  
Vol 19 (4) ◽  
pp. 402-418 ◽  
Author(s):  
Luciana Scotti ◽  
Alex France Messias Monteiro ◽  
Jéssika de Oliveira Viana ◽  
Francisco Jaime Bezerra Mendonça Junior ◽  
Hamilton M. Ishiki ◽  
...  

Background: Metabolic disorders are a major cause of illness and death worldwide. Metabolism is the process by which the body makes energy from proteins, carbohydrates, and fats; chemically breaking these down in the digestive system towards sugars and acids which constitute the human body's fuel for immediate use, or to store in body tissues, such as the liver, muscles, and body fat. Objective: The efficiency of treatments for multifactor diseases has not been proved. It is accepted that to manage multifactor diseases, simultaneous modulation of multiple targets is required leading to the development of new strategies for discovery and development of drugs against metabolic disorders. Methods: In silico studies are increasingly being applied by researchers due to reductions in time and costs for new prototype synthesis; obtaining substances that present better therapeutic profiles. Discussion: In the present work, in addition to discussing multi-target drug discovery and the contributions of in silico studies to rational bioactive planning against metabolic disorders such as diabetes and obesity, we review various in silico study contributions to the fight against human metabolic pathologies. Conclusion: In this review, we have presented various studies involved in the treatment of metabolic disorders; attempting to obtain hybrid molecules with pharmacological activity against various targets and expanding biological activity by using different mechanisms of action to treat a single pathology.


2020 ◽  
Vol 11 (2) ◽  
pp. 9629-9637

In ’today’s generation, Diabetes mellitus is a very common lifestyle-based disease in which an insufficient amount of insulin is produced, which results in a rise of glucose level in the body with frequent urination and patient feels thirsty and hungry. In our present work, we have used the alpha-glucosidase receptor against the natural plant product as a ligand for docking studies. For this in silico studies, various online tools, databases, and software were used. The proposed approaches were PDB, Molinspiration, Chemsketch, PyRx software, and many more. The binding scores were retrieved by PyRx software and no tumorigenicity, mutagenicity was there, and all parameters were in the desired range. The compounds used as ligands have shown energy minimization up to -6.7 to -8.7 kcal and can be further used as optimization, simulation, and in vitro and in vivo experimental validation.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1697-1697
Author(s):  
Terra Lasho ◽  
Alexander Tischer ◽  
Guadalupe Belen Antelo ◽  
Animesh Pardanani ◽  
Christy Finke ◽  
...  

Introduction: Isocitrate dehydrogenase 1 and 2 (IDH1/2) are metabolic enzymes in the citric acid cycle, producing alpha-ketoglutarate (αKG). Mutations in specific regions of these genes have been characterized in gliomas, AML and chronic myeloid neoplasms such as MDS and MPN. These mutations produce an oncometabolite 2-hydroxyglutarate (2HG) that disrupts the epigenetic phenotype of myeloid cells promoting oncogenesis. While this process has been characterized for arginine hot spot (R132/R140) mutations, there exist variants of unclear significance (IDHVUS), with potential pathogenic predictions using in silico assessment models. With the availability of mutant IDH inhibitors in practice, it has become important to characterize these VUS. We carried out this study to functionally interrogate potentially pathogenic IDHVUS in MDS and MPN. Methods: After institutional approval, bone marrow (BM) DNA of patients with MDS and MPN, including overlap syndromes were subjected to next generation sequencing (29-gene, including the entire coding region of IDH1/2) by previously described methods (Patnaik et al., BCJ 2016). A sub-set of patients with available plasma [IDH wild type (IDHWT), bona fide IDH mutations (IDHMT) and IDHVUS with predicted pathogenicity (≤0.01% minor allele frequency, and predicted damaging in silico scores)] were submitted for mass spectrometry (LC-MS) based detection of IDH-related metabolites; D and L isomers of 2HG, αKG, and total 2HG. The impact of variations on protein secondary structure was assessed by the GorIV prediction algorithm. Potential alterations within the tertiary structure of the proteins was evaluated by in silico mutagenesis. Results: One hundred and seventeen patients were included in the study; median age 68 years (range, 39-94), 68% male. Of these, 40 (34%) had MDS, 42 (36%) MPN, and 35 (30%) MDS/MPN overlap syndromes. Eighty six (74%) had IDHMT, including n=28 (24%) with IDH1MT (R132C/G/H/S) (11 MDS, 8 MPN, 9 MDS/MPN) and n=59 (50%) with IDH2MT (R140G/Q/W) (22 MDS, 20 MPN, 17 MDS/MPN). IDHVUS were detected in 32 (27%) patients, including 1 IDH1MT patient, and involved IDH1 in 14 (12%) cases and IDH2 in 18 (15%) cases. All IDHVUS were missense, except for a 2 amino acid insertion in IDH2, with the most frequent VUS being IDH1Y183C (7%) and IDH2T352P (7%). While there were no phenotypic differences between IDH1/2MUT and IDH1/2VUS, in comparison to patients with IDH1/2MT, those with IDH1VUS were more likely to have higher WBC counts (median 8.1 vs 3.6 x109/L, p=0.0322), higher neutrophil counts (median 3.3 vs 1.3 x109/L, p=0.0203), and lower BM blast % (median 1 vs 3%, p=0.02061). Compared to IDH1/2MT patients, those with sole IDH1/2VUS more frequently had mutations in SF3B1 (p=0.0167), while they were associated with a lower frequency of SRSF2 mutations (p=0.0002). Interestingly, TET2 mutations were detected in only 5% of patients with IDHMT and 16% of IDHVUS patients, although without reaching statistical significance. LC-MS analysis on 75 plasma samples (n=43 IDHMT, n=9 IDHVUS, n=20 IDHWT, 3 normal) revealed a significant increase in total 2HG levels in IDHMT vs IDHVUS (p=0.0089), and IDHWT (p=0.0020) cases (Figure 2A-D). While there were no significant differences in αKG levels between the groups, the D-2HG enantiomer levels were higher in IDHMT samples vs IDHVUS (p=0.0199) and IDHWT (p=0.0055). On examination of the crystal structures of the IDH genes using PDB, while we observed a direct interaction between R132/R140/R172 and the catalytic core, the IDHVUS were located away from this active center and were hence thought to be allosteric in nature (Figure 2F). These VUS however, did demonstrate predictive steric clashes in the tertiary structure context of IDH1 using the PyMol artificial mutagenesis tool. The absence of wild-type crystal structure for IDH2precluded a similar analysis for IDH2. Median overall survival (OS) of the entire cohort (Figure 1) was 36 (range, 0-190) months, with OS being inferior in IDH1/2MT patients (34 months) vs those with IDH1/2VUS (50 months, p=0.0255). Conclusion: Our study demonstrates that in spite of predictive pathogenicity of IDH1/2VUS using in silico predictive tools and crystal studies, the lack of involvement of the arginine hot spot precludes IDH neomorphic activity, as shown by normal 2HG levels. In addition, in comparison to IDHMT patients, those with IDHVUS had fewer BM blasts and a better survival. Disclosures Patnaik: Stem Line Pharmaceuticals.: Membership on an entity's Board of Directors or advisory committees.


2019 ◽  
Vol 25 (7) ◽  
pp. 774-782 ◽  
Author(s):  
Nikhil Agrawal ◽  
Balakumar Chandrasekaran ◽  
Amal Al-Aboudi

A2A receptor belongs to the family of GPCRs, which are the most abundant membrane protein family. Studies in the last few decades have shown the therapeutic applications of A2A receptor in various diseases. In the present mini-review, we have discussed the recent progress in the in-silico studies of the A2A receptor. Herein, we described the different structures of A2A receptor, the discovery of new agonists and antagonists using virtualscreening/ docking, pharmacophore modeling, and QSAR based pharmacophore modeling. We have also discussed various molecular dynamics (MD) simulations studies of A2A receptor in complex with ligands.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 1531-1531
Author(s):  
Shijie Wu ◽  
Jiaojiao Zhou ◽  
Yiding Chen

1531 Background: Inherited PALB2 pathogenic variants are associated with an increased lifetime risk for breast cancer development. However, the interpretation of numerous PALB2 missense variants of uncertain significance (VUS) identified in germline genetic testing remains a challenge. Here, we assessed the impact of breast cancer patient-derived VUS on PALB2 function and identified pathogenic PALB2 missense variants that may increase cancer risk. Methods: A total of seven potentially pathogenic PALB2 VUS identified in 2,279 breast cancer patients were selected for functional analysis. All these selected VUS were assessed by SIFT, Align-GVGD, and PolyPhen2 in silico and were predicted to be deleterious by at least two in silico algorithms. The p.L35P [c.104T > C] variant was also included, for which pathogenicity has been recently confirmed. The effects of the VUS on the homologous recombination (HR) activity of PALB2 were tested by U2OS/DR-GFP reporting system. Functional characterization was further validated by protein co-immunoprecipitation and RAD51 recruitment assay. Results: PALB2 variants p.L24F [c.72G > C] and p.L35P [c.104T > C] showed the most significant disruption to the HR activity of PALB2 relative to the wild-type condition, retaining only 52.2% ( p = 0.0013) and 8.5% ( p < 0.0001) of HR activity respectively. Moderate but statistically significant HR deficiency was observed for four other variants (p.P405A [c.1213C > G], p.T1012I [c.3035C > T], p.E1018D [c.3054G > C], and p.T1099M [c.3296C > T]). We found no statistical differences for the p.K628N [c.1884G > T] and p.R663C [c.1987C > T] in the HR activity compared to wild-type PALB2. The p.L24F and p.L35P variants compromised the BRCA1-PALB2 interaction and reduced RAD51 foci formation in response to DNA damage. Conclusions: We have identified a novel patient-derived pathogenic PALB2 missense variant, p.L24F [c.72G > C], that compromises PALB2-mediated HR activity. We suggest the integration of the identified pathogenic variants into breast cancer genetic counseling and individualized treatment regimens for better clinical outcomes.


Sign in / Sign up

Export Citation Format

Share Document