RNA analysis of B cell lines arrested at defined stages of differentiation allows for an approximation of gene expression patterns during B cell development

2003 ◽  
Vol 74 (1) ◽  
pp. 102-110 ◽  
Author(s):  
Panagiotis Tsapogas ◽  
Thomas Breslin ◽  
Sven Bilke ◽  
Anna Lagergren ◽  
Robert Månsson ◽  
...  
Author(s):  
Lena Bundscherer ◽  
Anke Schmidt ◽  
Annemarie Barton ◽  
Sybille Hasse ◽  
Kristian Wende ◽  
...  

2005 ◽  
Vol 12 (3) ◽  
pp. 203-209 ◽  
Author(s):  
Mathilda Mandel ◽  
Michael Gurevich ◽  
Gad Lavie ◽  
Irun R. Cohen ◽  
Anat Achiron

Multiple sclerosis (MS) is an autoimmune disease where T-cells activated against myelin antigens are involved in myelin destruction. Yet, healthy subjects also harbor T-cells responsive to myelin antigens, suggesting that MS patient-derived autoimmune T-cells might bear functional differences from T-cells derived from healthy individuals. We addressed this issue by analyzing gene expression patterns of myelin oligodendrocytic glycoprotein (MOG) responsive T-cell lines generated from MS patients and healthy subjects. We identified 150 transcripts that were differentially expressed between MS patients and healthy controls. The most informative 43 genes exhibited >1.5-fold change in expression level. Eighteen genes were up-regulated including BCL2, lifeguard, IGFBP3 and VEGF. Twenty five genes were down-regulated, including apoptotic activators like TNF and heat shock protein genes. This gene expression pattern was unique to MOG specific T-cell lines and was not expressed in T-cell lines reactive to tetanus toxin (TTX). Our results indicate that activation in MS that promotes T-cell survival and expansion, has its own state and that the unique gene expression pattern that characterize autoreactive T-cells in MS represent a constellation of factors in which the chronicity, timing and accumulation of damage make the difference between health and disease.


2000 ◽  
Vol 164 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Frank M. Raaphorst ◽  
Folkert J. van Kemenade ◽  
Elly Fieret ◽  
Karien M. Hamer ◽  
David P. E. Satijn ◽  
...  

2000 ◽  
Vol 80 (12) ◽  
pp. 1833-1844 ◽  
Author(s):  
Dave N T Aryee ◽  
Wolfgang Sommergruber ◽  
Karin Muehlbacher ◽  
Barbara Dockhorn-Dworniczak ◽  
Andreas Zoubek ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3156-3156 ◽  
Author(s):  
Grzegorz S. Nowakowski ◽  
Xiaosheng Wu ◽  
Jennifer L. Abrahamzon ◽  
Renee Tschumper ◽  
Neil E. Kay ◽  
...  

Abstract Background: Normal and tumor stem cells are characterized by high activity of multidrug resistance (MDR) transporters. One of these, ABCG2 (ATP-binding cassette, sub-family G member 2 protein), is an ATP dependent transporter and putative stem cell marker responsible for verapamil sensitive Hoechst efflux. While ABCG2 is known to be expressed in normal and leukemic stem cells, as well as a small population of normal lymphocytes and some B-cell malignancies, its expression in chronic lymphocytic leukemia (CLL) is unknown. It has been postulated that leukemic stem cells due to their quiescent nature and expression of MDR transporters represent a population resistant to therapy and that this residual population is critical for tumor persistence and recurrence. Hypothesis: We hypothesized that ABCG2 is expressed in a small percentage of primary CLL B cells; gene expression profiles of ABCG2 positive versus ABCG2 negative CLL B cells differ in respect to expression of self renewal and lymphoid development genes; the frequency of ABCG2+ CLL B cells increases after treatment in patients responding to therapy. Methods: We analyzed ABCG2 expression by primary CD5+, CD19+ CLL-B cells from untreated CLL patients of all Rai stages by flow cytometry. In a subset of patients we used fluorescence activated cell sorting (FACS) to sort CD19+, CD5+ ABCG2+ and CD19+, CD5+ ABCG2- cells. Gene expression profiling was then performed using the U133 plus 2.0 Affymetrix microarray platform. In a separate cohort of patients treated in a clinical trial of pentostatin, cyclophosphamide and rituximab (PCR), the percentage of ABCG2+, CD19+, CD5+, CD79b dim cells at baseline and then two months after completion of 6 cycles of PCR therapy where patients had minimal residual disease (MRD) was assessed and correlated with clinical response. Results: ABCG2+ CD19+, CD5+ detectable populations were seen in all 20 CLL assessed patients (median percentage 0.6%; range 0.08%–3.8%). There was no difference in percentage of ABCG2+ cells based on Rai stage, IGVH mutational status, Zap70 or CD38 expression. Preliminary analysis of the gene expression profiling of ABCG2 positive versus negative CLL B cells from four randomly selected patients revealed significantly higher expression of genes associated with self-renewal, cell cycle and early B-cell development including: cyclin-dependent kinase inhibitor 1C (CDKN1C, p=0.034), transcription factor 7-like 2 (TCF7L2, involved in WNT pathway regulation, p=0.016), beta-catenin (p=0.034) and pre-B-cell colony enhancing factor 1 (PBEF-1, p=0.037). Flow based assessment of the levels of ABCG2 positive populations at baseline and after therapy with PCR in patients with minimal residual disease showed a dramatic increase in frequency of ABCG2 positive CLL B cells. The percentage of ABCG2+ cells went from a median level of 0.19% (range 0.04%–0.19%) prior to therapy to a median level of 10.93% (range 0.15%–25.12%), p<0.001. In contrast two patients who did not reach MRD (partial responses by NCI-WG criteria) had no significant increase in percentage of ABCG2 positive cells (0.14%; 0.23% and 0.16%; 0.21% prior and after therapy, respectively, p=0.68). Conclusion: Our data indicate that ABCG2 positive CLL B-cells constitute 0.1–3.8% of circulating CLL B-cells in untreated patients. The frequency of ABCG2+ CLL B-cells appears to dramatically increase after therapy in the MRD state; this could be related to their relative resistance to therapy and/or a shift from extravascular compartments post therapy. Since ABCG2 positive CLL B-cells demonstrate expression of early B-cell development and self-renewal genes we believe that that this population could represent a putative self renewing CLL B-cell compartment. Further studies to characterize features of ABCG2 CLL-B –cells in relation to their capacity to be self renewing and resistance to therapy are warranted.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3805-3805
Author(s):  
Jorge Contreras ◽  
Jayanth Kumar Palanichamy ◽  
Tiffany Tran ◽  
Dinesh S. Rao

Abstract Diffuse large B cell lymphoma (DLBCL) is one of the most common Non-Hodgkin lymphomas among adults. It is a heterogeneous disease characterized by multiple mutations and translocations. Gene expression profiling studies have revealed several characteristic gene expression patterns, with two main patterns emerging, namely Germinal Center(GC) type, and Activated B Cell (ABC) type. ABC-type DLBCL shows gene expression patterns that resemble activated B-cells, with increased expression of anti-apoptotic, and pro-proliferative genes. Critically, upregulation of the NF-κB the pathway is a hallmark of ABC-type DLBCL and has been shown to be necessary for survival, and is caused by several different mutations at different levels within the pathway. Recent work has revealed the critical importance of a new class of small RNA molecules, namely microRNAs, in gene regulation. Of these, microRNA-146a (miR-146a) was discovered as an NF-κB induced microRNA that plays a role as a negative feedback regulator of this pathway by targeting adaptor proteins. To further characterize miR-146a, mice deficient for this miRNA were created, and were found to develop lymphadenopathy, splenomegaly, and myeloid proliferation. As expected, immune cells in these mice have an upregulated NF-κB pathway and many of the phenotypes can be ameliorated by inhibition of the NF-κB pathway. Importantly, a significant proportion of the animals develop B-cell lymphoma at older ages. In this study, we examined the role of miR-146a in the development of malignancy in B-cells. To accelerate the role of miR-146a in tumor formation we overlaid the miR-146a deficient allele onto the Eμ-Myc like mouse model. Eμ-Myc mice develop tumors on average by 14weeks of age. The transgenic status of animals was verified by genotyping, RNA and protein expression analyses. miR-146a sufficient and deficient animals on the Eμ-Myc background were followed for tumor latency by peripheral blood analysis and careful physical examination. Based on approved humane criteria for animal discomfort, animals were sacrificed and hematopoietic tissue was harvested for analysis. Mice deficient for miR-146a had a statistically reduced survival in comparison with miR-146a sufficient animals with a p-value of .0098 (Kaplan Meir survival analysis). Complete Blood Count of animals at time of death revealed an increase leukemia presentation in the miR-146a deficient background. FACS analysis of tumor tissue from both groups revealed an increase in the number of IgM positive tumors in the miR-146a-deficient background indicating skewing towards more mature B cell neoplasms when miR-146a is lacking. Lineage analysis of tumors verified them to be of B cell origin although a subset of miR-146a sufficient tumors had higher numbers of infiltrating myeloid cells compared to deficient animals. Furthermore, histologic analysis of hematopoietic organs showed that while infiltration remained similar in kidneys and liver, more spleens in the miR-146a deficient background tended to be less involved. Our extensive histopathologic and immunophenotypic analyses indicate that miR-146a deficiency drives a more aggressive malignant phenotype in the B-cell lineage. In keeping with this, our profiling studies of human DLBCL suggest that a subset of DLBCL show decreased expression of miR-146a. We are currently examining the status of NF-κB in the murine tumors and using high throughput sequencing approaches to delineate gene expression differences between miR-146a sufficient and deficient tumors. We anticipate the discovery of novel gene targets of miR-146a and expect that these studies will lead to improved diagnostic and therapeutic options for patients of B-cell malignancies. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 104 (6) ◽  
pp. 467-475 ◽  
Author(s):  
Zhiqiang Wang ◽  
Jannine D. Cody ◽  
Robin J. Leach ◽  
P. O'Connell

1993 ◽  
Vol 13 (6) ◽  
pp. 3686-3697 ◽  
Author(s):  
R L Young ◽  
S J Korsmeyer

bcl-2 mRNA is present at high levels in pre-B-cell lines but is down-regulated in most mature B-cell lines. To investigate the mechanisms responsible for its developmental control, we studied the regulation of bcl-2 expression in human B-lineage cell lines. Using nuclear run-on assays, we found that bcl-2 transcription decreases in parallel with levels of steady-state mRNA during B-cell development. To define cis-acting elements that regulate bcl-2 transcription, we analyzed the expression of transiently transfected promoter-reporter constructs. We identified a novel negative regulatory element (NRE) in the bcl-2 5'-untranslated region that decreased expression from the bcl-2 P1 promoter or heterologous promoters in a position-dependent fashion. The NRE functions in either orientation but contains distinct orientation-dependent subfragments. Additional analyses demonstrated that multiple, functionally redundant sequence elements mediate NRE activity. Though the bcl-2 NRE is active in pre-B- and mature B-cell lines, chromatin structure of the endogenous NRE differs in these cells, suggesting that its activity or effect may vary during B-cell development. Our results indicate that negative control of transcription initiated at the P1 promoter is an important determinant of the differential expression of bcl-2.


Sign in / Sign up

Export Citation Format

Share Document