Redox chemical remanent magnetization—A new dimension in exploration for sulfide deposits in volcanic covered areas

Geophysics ◽  
1981 ◽  
Vol 46 (8) ◽  
pp. 1169-1181 ◽  
Author(s):  
Lloyal O. Bacon ◽  
Charles L. Elliot

Redox chemical remanent magnetization (CRM) results from current flow associated with a redox potential cell. An active redox cell covered by later volcanics may continue in operation for a period of time, sufficiently long that the current flowing in the overlying volcanics will cause or assist in the remobilization of iron. The remobilization may be either in situ as an alteration of minerals or by actual migration as a ferrous hydroxide, with fixation at a higher Eh nearer the surface. Redox CRM will leave a characteristic pattern as a magnetic memory in the rocks. Measurement of the magnetic rock properties and interpretation of resulting patterns can be used to locate the ancient redox cell. Redox cells in nature are usually associated with oxidizing sulfide deposits. Under appropriate conditions, redox CRM can be utilized as an indirect method for sulfide exploration. Field results for two porphyry sulfide deposits and a massive sulfide deposit under approximately 400 m of post‐mineral volcanic cover demonstrate the feasibility of this technique. Field tests in nonsulfide areas indicate that pervasive occurrence of false redox CRM anomalies do not exist except in the presence of sulfides. Laboratory experiments in the simulation of the redox CRM concept give support to the theory.

1991 ◽  
Vol 28 (11) ◽  
pp. 1699-1730 ◽  
Author(s):  
T. J. Barrett ◽  
W. H. MacLean ◽  
S. Cattalani ◽  
L. Hoy ◽  
G. Riverin

The Ansil massive sulfide deposit occurs at the contact of the underlying Northwest Rhyolite and the overlying Rusty Ridge Andesite, in the lower part of the Central Mine sequence of the Blake River Group. The orebody, which is roughly ellipsoidal in outline and up to 200 m × 150 m across, contained reserves of 1.58 Mt of massive sulfide grading 7.2% Cu, 0.9% Zn, 1.6 g/t Au, and 26.5 g/t Ag. Production began in 1989. Least-altered host rocks are low-K basaltic andesites and low-K rhyolites. These rocks have Zr/Y ratios of ~5 and LaN/YbN ratios of ~2.3, typical of tholeiitic volcanic rocks, although their major-element chemistry is transitional between tholeiitic and calc-alkaline volcanic rocks.The Ansil deposit, which dips ~50° east, is a single orebody comprising two main massive sulfide lenses (up to ~35 m thick) connected laterally via a thinner blanket of massive sulfides, with thin discontinuous but conformable massive magnetite units at the base and top of the orebody. Sulfide ore consists of massive to banded pyrrhotite–chalcopyrite. In the downplunge lens, up to 10 m of massive magnetite are capped by up to 10 m of massive sulfide. Finely banded cherty tuff, with sphalerite–pyrite–chalcopyrite, forms a discontinuous fringe to the deposit.The two main lenses of massive sulfide have the highest contents of Cu, Ag, and Au and are thought to have formed in areas of major hydrothermal input. Altered feeder zones contain either chlorite + chalcopyrite + pyrrhotite ± magnetite, or chlorite + magnetite ± sulfides. Footwall mineralization forms semiconformable zones ~5–10 m thick that directly underlie the orebody and high-angle pipelike zones that extend at least 50 m into the footwall. Ti–Zr–Al plots indicate that almost all altered footwall rocks were derived from a homogeneous rhyolite precursor. Hanging-wall andesites were also altered. Despite some severe alteration, all initial volcanic rock compositions can be readily identified, and thus mass changes can be calculated. Silica has been both significantly added or removed from the footwall, whereas K has been added except in feeder pipes. Oxygen-isotope compositions up to at least 50 m into the hanging wall and footwall are typically depleted in δ18O by 2–6‰. These rocks have gained Fe + Mg and lost Si. Altered samples in general range from light-rare-earth-element (REE) depleted to light-REE enriched, although some samples exhibit little REE modification despite strong alkali depletion. Mineralized volcanic rocks immediately below the orebody are enriched in Eu (as are some Cu-rich sulfides in the orebody).Contact and petrographic relations generally suggest that the main zone of massive magnetite formed by replacement of cp–po-rich sulfides, although local relations are ambiguous. Magnetite formation may reflect waning hydrothermal activity, during which fluids mixed with seawater and became cooler and more oxidized. Cu-rich feeder pipes that cut magnetite-rich footwall indicate a renewal of Cu-sulfide mineralization after magnetite deposition. Chloritic zones with disseminated sulfides occur up to a few hundred metres above the orebody, attesting to continuing hydrothermal activity.


1992 ◽  
Vol 29 (7) ◽  
pp. 1349-1374 ◽  
Author(s):  
T. J. Barrett ◽  
S. Cattalani ◽  
L. Hoy ◽  
J. Riopel ◽  
P.-J. Lafleur

The Mobrun polymetallic deposit near Rouyn–Noranda comprises two complexes of massive sulfide lenses within mainly felsic volcanic rocks of the Archean Blake River Group. The Main lens contained 3.37 Mt of massive sulfides, with 1989 reserves of 0.95 Mt at 0.81% Cu, 2.44% Zn, 30.3 g/t Ag, and 2.2 g/t Au. The 1100 complex, located ~250 m to the southeast of the Main complex, contains estimated 1989 reserves of 10.4 Mt at 0.76% Cu, 5.43% Zn, 37.4 g/t Ag, and 1.35 g/t Au.Host volcanic rocks of the Main complex are mostly massive, brecciated, and tuffaceous rhyolites. The rhyolites are commonly strongly sheared parallel to lithological contacts, which are locally displaced by high-angle faults. Immobile-element plots such as Y–Zr and Nb–Zr show a separation of rhyolite data into two distinct alteration trends that generally correspond to massive and in situ brecciated rhyolite of the footwall, and tuffaceous rhyolite of the hanging wall. The hanging wall has tholeiitic Zr/Y ratios (3–5), whereas the footwall has mildly calc-alkaline Zr/Y ratios (7–9). Several immobile-element trends indicate that there was a subtle but clear change in rhyolite composition near the time of ore deposition. Identification of chemically distinct footwall and hanging wall rhyolites allows these units to be recognized and traced along strike, even where alteration is strong. Sericitization and silicification extend at least 100 m from the orebody, with local chloritic zones in the upper footwall. Calculated mass changes indicate that the footwall generally has lost silica mass relative to the hanging wall. Alteration zones associated with mineralization have mass gains in FeO + MgO and K2O gains, but mass loss in silica.The 1100 complex, located stratigraphically below the Main complex, is hosted by rhyolite, with one main andesite interval in the footwall. The footwall contains three chemically distinct rhyolite types, all tholeiitic. Hanging-wall rhyolites are, however, mildly calc-alkaline, and thus are chemically comparable to, and correlated with, the footwall of the Main complex. Rhyolites within ~100 m stratigraphically of the Main and 1100 complexes commonly have positively shifted δ18O whole-rock values of 11–13‰. These high values are interpreted as the result of an initial, widespread phase of low-temperature hydrothermal alteration that increased δ18O values by 3–5‰ relative to unaltered rhyolites. Some footwall rhyolites, however, are relatively depleted in 18O, strongly depleted in Ca–Na and depleted in Eu2+. Rhyolites with these chemical features have been overprinted by higher temperature alteration, presumably in localized feeder zones. All four rhyolite types near the 1100 complex are chemically recognizable despite contrasting alteration.The orebodies are interpreted as synvolcanic, based on their occurrence along distinctive volcanic contacts, and the presence of primary sulfide textures where deformation is minor. The chemostratigraphic framework defined for the host rhyolite sequence can be used to trace critical volcanic contacts through lithologically monotonous, strongly altered, and faulted stratigraphy.


1996 ◽  
Vol 91 (5) ◽  
pp. 821-828 ◽  
Author(s):  
Matthew H. Salisbury ◽  
Bernd Milkereit ◽  
Wouter Bleeker

1991 ◽  
Vol 28 (9) ◽  
pp. 1301-1327 ◽  
Author(s):  
T. J. Barrett ◽  
S. Cattalani ◽  
F. Chartrand ◽  
P. Jones

The original Aldermac mine near Noranda contained several Cu–Zn massive sulfide lenses hosted by felsic to mafic volcanic rocks of the late Archean Blake River Group. The original Nos. 3–6 orebodies, which consisted of massive pyrite, with lesser magnetite, pyrrhotite, chalcopyrite, and sphalerite, contained 1.87 Mt of Cu–Zn ore that averaged 1.47% Cu (Zn was not recovered). The orebodies occurred within felsic breccias and tuffs up to 100 m thick that are stratigraphically overlain by an extensive dome of mainly massive rhyolite and rhyodacite (up to 250 m thick and at least 550 m across). Most of the volcanic rocks that laterally flank and overlie the felsic dome are dacitic to andesitic flows, breccia, and tuff, with minor rhyolites, and associated subvolcanic sills of quartz-feldspar porphyry and gabbro.The new massive sulfide deposit, discovered in 1988, lies 150–200 m east of the mined-out orebodies, at a similar stratigraphic level within altered felsic breccia and tuff. The sulfides are mainly in the No. 8 lens, which contains 1.0 Mt at an average grade of 1.54% Cu, 4.12% Zn, 31.2 g/t Ag, and 0.48 g/t Au. Pyrite forms porphyroblastic megacrysts in a groundmass of pyrrhotite, sphalerite, magnetite, and chalcopyrite. A funnel-shaped, chloritized stockwork zone underlies the No. 8 lens and contains Cu-stringer mineralization. The No. 8 lens appears to be zoned, with overall decreasing Cu:Zn ratios from the core to the fringes of the lens. Massive sulfides in this lens have high Ag, Cd, and Hg contents relative to other massive sulfide deposits near Noranda.Ti versus Zr trends for least-altered Aldermac volcanic rocks indicate a more or less continuous magmatic fractionation trend ranging from high-Ti andesite to andesite, dacite, rhyodacite, and two distinct rhyolites (A and B). Most volcanic rocks were derived from a common parental magma that was transitional between tholeiitic and calc-alkaline compositions, as indicated by Ti–Y–Zr–Nb data and rare-earth-element distributions.Ti versus Zr trends in altered volcanic rocks indicate that silicification (mass gain) has affected some of the andesitic to rhyodacitic rocks, whereas chloritization (mass loss) has affected many of the rhyolitic rocks. Intermediate to mafic volcanic rocks above and lateral to the felsic dome are commonly silicified, possibly the result of hydrothermally remobilized silica derived from underlying felsic volcanic rocks.The orebodies appear to have formed at an eruptive hiatus between mafic → felsic and felsic → mafic cycles, during explosive activity and accumulation of felsic breccia and tuff. Ore was deposited mainly within a felsic fragmental sequence (rhyolite A), but before emplacement of the dome of rhyolite B. In compositionally diverse volcanic terrains, the contact between successive mafic–felsic and felsic–mafic cycles may be a good exploration target, in particular specific geochemical contacts within the felsic stratigraphy.


2019 ◽  
Vol 487 (6) ◽  
pp. 659-662
Author(s):  
N. R. Ayupova ◽  
V. V. Maslennikov ◽  
K. A. Filippova

The high REE contents (57,23-561,2 ppm) of thin-layered sulfide ores of the Talgan Cu-Zn massive sulfide deposit (South Urals) are related to the presence of REE minerals: galgenbergite, parisite, bastnesite, synchysite and xenotime, which were found for the first time in massive sulfide deposits of the Urals. These minerals occur in quartz-carbonate-chlorite matrix of sulfide layers, as well as pyrite nodules and sub- and euderal crystals. The chondrite-normalized REE patterns are enriched in LREEs relatively to HREEs and the presence of weak negative cerium and positive europium anomalies. The LREE contents decrease by an order of magnitude and the LREE and HREE contents become similar with decreasing amount of hyaloclastic material in sulfide layers. The REEs for the formation of REE minerals are derived from mixed carbonate-hyaloclastic and ore material during the formation of layered sulfide ores.


Author(s):  
Philip Rieger ◽  
Joseph M. Magnall ◽  
Sarah A. Gleeson ◽  
Marcus Oelze ◽  
Franziska D. H. Wilke ◽  
...  

AbstractCarbonate minerals are ubiquitous in most sediment-hosted mineral deposits. These deposits can contain a variety of carbonate types with complex paragenetic relationships. When normalized to chondritic values (CN), rare-earth elements and yttrium (REE+YCN) can be used to constrain fluid chemistry and fluid-rock interaction processes in both low- and high-temperature settings. Unlike other phases (e.g., pyrite), the application of in situ laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) data to the differentiation of pre-ore and hydrothermal carbonates remains relatively untested. To assess the potential applicability of carbonate in situ REE+Y data, we combined transmitted light and cathodoluminescence (CL) petrography with LA-ICP-MS analysis of carbonate mineral phases from (1) the Proterozoic George Fisher clastic dominated (CD-type) massive sulfide deposit and from (2) correlative, barren host rock lithologies (Urquhart Shale Formation). The REE+YCN composition of pre-ore calcite suggests it formed during diagenesis from diagenetic pore fluids derived from ferruginous, anoxic seawater. Hydrothermal and hydrothermally altered calcite and dolomite from George Fisher is generally more LREE depleted than the pre-ore calcite, whole-rock REE concentrations, and shale reference values. We suggest this is the result of hydrothermal alteration by saline Cl--rich mineralizing fluids. Furthermore, the presence of both positive and negative Eu/Eu* values in calcite and dolomite indicates that the mineralizing fluids were relatively hot (>250°C) and cooled below 200–250°C during ore formation. This study confirms the hypothesis that in situ REE+Y data can be used to differentiate between pre-ore and hydrothermal carbonate and provide important constraints on the conditions of ore formation.


Author(s):  
A. S. Tseluyko ◽  
V. V. Maslennikov ◽  
N. R. Aupova ◽  
S. P. Maslennikova

A study of the ore facies of the massive sulfide ores from the Yubileynoe deposit (ore body № 2) has been shown. The sub-seafloor and seafloor hydrothermal, biogenic, clastic and seafloor hypergenic facies have been diagnosed in the studied ores, reflecting different formation conditions within the ore body № 2. The seafloor and sub-seafloor hydrothermal facies occur in the central part of the ore body, while clastic with seafloor hypergenic facies dominate at the flanks of the ore body. Rare minerals are native gold, minerals of Ag, Te, Bi and Pb widespread in seafloor hydrothermal and clastic ore facies. The ratio of the ore facies in the ore body № 2 shows the simiiar ore-forming processes within the Yubileynoe deposit and other massive sulfide deposits of the Urals.


1976 ◽  
Author(s):  
J. S. Stacey ◽  
B.R. Doe ◽  
L.T. Silver ◽  
R.E. Zartman

Sign in / Sign up

Export Citation Format

Share Document