Geophysical case history of the Two Hills Colony gas field of Alberta

Geophysics ◽  
1985 ◽  
Vol 50 (7) ◽  
pp. 1061-1076 ◽  
Author(s):  
G. W. Focht ◽  
F. E. Baker

Seismic waveform changes, which in their most obvious form are known as “bright spots,” have been known for some years to give direct indications of hydrocarbons. An example of successful application of waveform analysis and direct detection of gas in a shallow Lower Cretaceous formation of east‐central Alberta, Canada, is detailed. At a depth of approximately 1 800 ft, the Colony formation typically consists of only thin (10 ft) blanket sands interbedded with shale. However, in 1976, Hudson’s Bay Oil and Gas Company Ltd., encountered a 100 ft thick occurrence of channel sand (with substantial gas pay) in this formation. After some hit and miss attempts at extending the channel trend through geologic interpretation, seismic methods were applied. A seismic line over the channel well revealed a classic bright spot. Several other lines also showed bright spots in the Colony zone. The conclusions from seismic modeling are as follows. Gas within the Colony sand is seismically detectable. The relatively low velocity of the gas sand, combined with the lateral consistency of the sediments above the Colony formation, permits detection. However, the inconsistency and complexity of sediments underlying the Colony resulted in interference patterns that prevented exact quantitative analysis of gas pays. Furthermore, other geologic phenomena provided waveform changes similar to that of gas sand. Through detailed examination of the geology and evaluation of the alternative explanations of the waveform changes, successful interpretation was accomplished. Estimations of net gas pay were generally accurate within 20 percent. In some areas, very subtle anomalies in wave character representing gas pays as thin as 5 ft can now be interpreted with confidence. Several examples are given of successful detection and prediction of gas. To date (October, 1979) seismic waveform analysis has led to the drilling of 86 wells; 67 of these are commercial gas wells in the Colony formation, representing a success ratio of 78 percent. Total reserves discovered geophysically (by Hudson’s Bay Oil and Gas Co. Ltd.) to date in the Colony formation are estimated at 110 Bcf.

Geophysics ◽  
1990 ◽  
Vol 55 (6) ◽  
pp. 646-659 ◽  
Author(s):  
C. Frasier ◽  
D. Winterstein

In 1980 Chevron recorded a three‐component seismic line using vertical (V) and transverse (T) motion vibrators over the Putah sink gas field near Davis, California. The purpose was to record the total vector motion of the various reflection types excited by the two sources, with emphasis on converted P‐S reflections. Analysis of the conventional reflection data agreed with results from the Conoco Shear Wave Group Shoot of 1977–1978. For example, the P‐P wave section had gas‐sand bright spots which were absent in the S‐S wave section. Shot profiles from the V vibrators showed strong P‐S converted wave events on the horizontal radial component (R) as expected. To our surprise, shot records from the T vibrators showed S‐P converted wave events on the V component, with low amplitudes but high signal‐to‐noise (S/N) ratios. These S‐P events were likely products of split S‐waves generated in anisotropic subsurface media. Components of these downgoing waves in the plane of incidence were converted to P‐waves on reflection and arrived at receivers in a low‐noise time window ahead of the S‐S waves. The two types of converted waves (P‐S and S‐P) were first stacked by common midpoint (CMP). The unexpected S‐P section was lower in true amplitude but much higher in S/N ratio than the P‐S section. The Winters gas‐sand bright spot was missing on the converted wave sections, mimicking the S‐S reflectivity as expected. CRP gathers were formed by rebinning data by a simple ray‐tracing formula based on the asymmetry of raypaths. CRP stacking improved P‐S and S‐P event resolution relative to CMP stacking and laterally aligned structural features with their counterparts on P and S sections. Thus, the unexpected S‐P data provided us with an extra check for our converted wave data processing.


2021 ◽  
pp. 1-36
Author(s):  
Zhiwei Xiao ◽  
Li Wang ◽  
Ruizhao Yang ◽  
Dewei Li ◽  
Lingbin Meng

An ultradeep, faulted karst reservoir of Ordovician carbonate was discovered in the Shunbei area of the Tarim Basin. Fractured-cavity reservoirs buried beneath the large thickness of upper Ordovician mudstone were formed along the fault-karst belts. The hydrocarbon accumulation in these reservoirs is controlled by the fault system, and the oil-gas accumulation was affected by karstification and hydrothermal reformation. Previous studies and 2D modeling revealed that the reservoirs had “bright spot” amplitude responses like “string beads,” and they have developed along the strike-slip faults. However, describing such a complex fault-controlled karst system is still a difficult problem that has not been well addressed. We have sought to instruct the attribute expression of faulted karst reservoirs in the northern part of the Tarim Basin. We applied coherence and fault likelihood (FL) seismic attributes to image faults and fractures zones. We then used a trend analysis method to calculate the residual impedance from the impedance of the acoustic inversion, using the fact that residual impedance has higher lateral resolution in reservoir predictions. Finally, we integrated the coherence, FL, and residual impedance attributes into a new seismic attribute, the “fault-vuggy body,” with a certain fusion coefficient. The fault-vuggy body attribute establishes a connection between faults and karst cavities. This method could help in the characterization and prediction of carbonate faulted karst reservoirs. Available drilling data were used to validate that the fused fault-vuggy body attribute was an effective reservoir prediction method. As the seismic sections and slices along the layer help delineate, the distribution of bright spots and strike-slip faults indicates that the main strike-slip fault zones are the most favorable reservoirs in the Shunbei Oil and Gas Field.


Geophysics ◽  
1985 ◽  
Vol 50 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Ross Alan Ensley

Shear waves differ from compressional waves in that their velocity is not significantly affected by changes in the fluid content of a rock. Because of this relationship, a gas‐related compressional‐wave “bright spot” or direct hydrocarbon indicator will have no comparable shear‐wave anomaly. In contrast, a lithology‐related compressional‐wave anomaly will have a corresponding shear‐wave anomaly. Thus, it is possible to use shear‐wave seismic data to evaluate compressional‐wave direct hydrocarbon indicators. This case study presents data from Myrnam, Alberta which exhibit the relationship between compressional‐ and shear‐wave seismic data over a gas reservoir and a low‐velocity coal.


Geophysics ◽  
1977 ◽  
Vol 42 (4) ◽  
pp. 868-871 ◽  
Author(s):  
Jerry A. Ware

Confirmation that a bright spot zone in question is low velocity can sometimes be made by looking at constant velocity stacks or the common‐depth‐point gathers. When this confirmation does exist, then it is usually possible to do simple ray theory to get a reasonable estimate of the pay thickness, especially if the water‐sand velocity and the gas‐sand velocity are either known or can be predicted for the area. The confirmation referred to can take the form of under‐removal of the primary events or be exhibited by multiple reflections from the bright spot zone. Such under‐removals or multiple reflections will not be seen on the stacked sections but are sometimes obvious on the raw data, such as the common‐depth‐point gathers, or can be implied by looking at constant velocity stacks of the zone in question at different stacking velocities.


2018 ◽  
Vol 55 (12) ◽  
pp. 1297-1311 ◽  
Author(s):  
Wei Yang ◽  
Xiaoxing Gong ◽  
Wenjie Li

Anomalously high-amplitude seismic reflections are commonly observed in deeply buried Ordovician carbonate strata in the Halahatang area of the northern Tarim Basin. These bright spots have been demonstrated to be generally related to effective oil and gas reservoirs. These bright spot reflections have complex geological origins, because they are deeply buried and have been altered by multi-phase tectonic movement and karstification. Currently, there is no effective geological model for these bright spots to guide hydrocarbon exploration and development. Using core, well logs, and seismic data, the geological origins of bright spot are classified into three types, controlled by karstification, faulting, and volcanic hydrothermal activity. Bright spots differing by geological origin exhibit large differences in seismic reflection character, such as reflection amplitude, curvature, degree of distortion, and the number of vertically stacked bright spots in the seismic section. By categorizing the bright spots and the seismic character of the surrounding strata, their geological origins can after be inferred. Reservoirs formed by early karstification were later altered by epigenetic karstification. Two periods of paleodrainage further altered the early dissolution pores. In addition, faults formed by tectonic uplift also enhanced the dissolution of the flowing karst waters. Some reservoirs were subsequently altered by Permian volcanic hydrothermal fluids.


Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 735-744 ◽  
Author(s):  
Ganyuan Xia ◽  
Mrinal K. Sen ◽  
Paul L. Stoffa

Gas hydrates are frozen methane gas that forms at appropriate pressure and temperature conditions. They are found in the marine sediments along continental margins worldwide. They have the economic potential of being tapped as a fuel source and also have the potential as a “greenhouse” agent after being freed into the atmosphere. In seismic sections, the occurrence of the base of gas hydrates, in some areas is often marked by a bright amplitude reflection. Such reflections follow the sea floor topography and are called bottom‐simulating reflectors (BSR). The BSRs have negative polarity with respect to the sea‐floor reflection and, in a common shot or a CDP gather, the amplitude increases with offset. The negative impedance contrast causing BSRs may be due to negative velocity contrast between hydrated sediments and normal sediment below or due to the presence of free gas at the base of the hydrates. In this paper, we carry out a prestack seismic waveform inversion of multichannel seismic data collected in the offshore of South Carolina to investigate the origin of the BSRs. We apply a multistage seismic waveform inversion for this purpose. A nonlinear optimization method is applied to estimate the low‐frequency component of the velocity, whereas an amplitude‐variation‐with‐offset inversion is applied to determine high‐frequency components of the velocity field. Our detailed seismic waveform inversion along the seismic line results in at least three low‐velocity zones where the velocity is well below the velocity of the normal sediments. Such low‐velocity zones correlate very well with negative fluid factors indicating the presence of free gas. Thus we conclude that the BSR is caused by free gas at the base of the hydrates in this region. We identify at least two other layers of free gas beneath the hydrates. The thickness of each of these layers is below the resolution of the source wavelet. Our results confirm similar findings reported from Ocean Drilling Program drilling and vertical‐seismic‐profiling analysis in the same general area.


Sign in / Sign up

Export Citation Format

Share Document