To: “The use and misuse of apparent resistivity in electromagnetic methods,” by B. R. Spies and D. E. Eggers which appeared in the July 1986 issue of GEOPHYSICS, p. 1462–1471.

Geophysics ◽  
1988 ◽  
Vol 53 (12) ◽  
pp. 1637-1637 ◽  

Of the list of possible definitions of magnetotelluric apparent resistivity, equation (18) is equivalent to the conventional Cagniard definition given by equation (14). Equation (21) is in error; there is no simple relation in terms of impedance for the root‐mean‐square average of the apparent resistivities from the real and imaginary parts of the impedance.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Weiqiu Pan ◽  
Tianzeng Li ◽  
Safdar Ali

AbstractThe Ebola outbreak in 2014 caused many infections and deaths. Some literature works have proposed some models to study Ebola virus, such as SIR, SIS, SEIR, etc. It is proved that the fractional order model can describe epidemic dynamics better than the integer order model. In this paper, we propose a fractional order Ebola system and analyze the nonnegative solution, the basic reproduction number $R_{0}$ R 0 , and the stabilities of equilibrium points for the system firstly. In many studies, the numerical solutions of some models cannot fit very well with the real data. Thus, to show the dynamics of the Ebola epidemic, the Gorenflo–Mainardi–Moretti–Paradisi scheme (GMMP) is taken to get the numerical solution of the SEIR fractional order Ebola system and the modified grid approximation method (MGAM) is used to acquire the parameters of the SEIR fractional order Ebola system. We consider that the GMMP method may lead to absurd numerical solutions, so its stability and convergence are given. Then, the new fractional orders, parameters, and the root-mean-square relative error $g(U^{*})=0.4146$ g ( U ∗ ) = 0.4146 are obtained. With the new fractional orders and parameters, the numerical solution of the SEIR fractional order Ebola system is closer to the real data than those models in other literature works. Meanwhile, we find that most of the fractional order Ebola systems have the same order. Hence, the fractional order Ebola system with different orders using the Caputo derivatives is also studied. We also adopt the MGAM algorithm to obtain the new orders, parameters, and the root-mean-square relative error which is $g(U^{*})=0.2744$ g ( U ∗ ) = 0.2744 . With the new parameters and orders, the fractional order Ebola systems with different orders fit very well with the real data.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 234
Author(s):  
Karthik Subramanian ◽  
Shantam Tandon

Power factor is the ratio of the real current or voltage received by a load to the root mean square (rms) value of the current or voltage that was supposed to be acquired by the same load. The fact that the two become different is due to the presence of reactive power in the circuit which gets dissipated.Improving the power factor means reducing the phase difference between voltage and current. Since majority of the loads are of inductive nature, they require some amount of reactive power for them to function. Therefore, for the better use of electrical appliances with minimum amount of electrical consumption, the power factor should necessarily be increased and should be brought near to 1. This can be easily done by the help of Automatic Power Factor Correction Capacitors and Active filters.  


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3108 ◽  
Author(s):  
Shing-Hong Liu ◽  
Chuan-Bi Lin ◽  
Ying Chen ◽  
Wenxi Chen ◽  
Tai-Shen Huang ◽  
...  

In recent years, wearable monitoring devices have been very popular in the health care field and are being used to avoid sport injuries during exercise. They are usually worn on the wrist, the same as sport watches, or on the chest, like an electrocardiogram patch. Common functions of these wearable devices are that they use real time to display the state of health of the body, and they are all small sized. The electromyogram (EMG) signal is usually used to show muscle activity. Thus, the EMG signal could be used to determine the muscle-fatigue conditions. In this study, the goal is to develop an EMG patch which could be worn on the lower leg, the gastrocnemius muscle, to detect real-time muscle fatigue while exercising. A micro controller unit (MCU) in the EMG patch is part of an ARM Cortex-M4 processor, which is used to measure the median frequency (MF) of an EMG signal in real time. When the muscle starts showing tiredness, the median frequency will shift to a low frequency. In order to delete the noise of the isotonic EMG signal, the EMG patch has to run the empirical mode decomposition algorithm. A two-electrode circuit was designed to measure the EMG signal. The maximum power consumption of the EMG patch was about 39.5 mAh. In order to verify that the real-time MF values measured by the EMG patch were close to the off-line MF values measured by the computer system, we used the root-mean-square value to estimate the difference in the real-time MF values and the off-line MF values. There were 20 participants that rode an exercise bicycle at different speeds. Their EMG signals were recorded with an EMG patch and a physiological measurement system at the same time. Every participant rode the exercise bicycle twice. The averaged root-mean-square values were 2.86 ± 0.86 Hz and 2.56 ± 0.47 Hz for the first and second time, respectively. Moreover, we also developed an application program implemented on a smart phone to display the participants’ muscle-fatigue conditions and information while exercising. Therefore, the EMG patch designed in this study could monitor the muscle-fatigue conditions to avoid sport injuries while exercising.


2021 ◽  
Vol 5 (2) ◽  
pp. 44
Author(s):  
Robert Jackson ◽  
Yang Xu ◽  
Swarna Saha ◽  
Kyle Schulze

This study investigates the predictions of the real contact area for perfectly elastic rough surfaces using a boundary element method (BEM). Sample surface measurements were used in the BEM to predict the real contact area as a function of load. The surfaces were normalized by the root-mean-square (RMS) slope to evaluate if contact area measurements would collapse onto one master curve. If so, this would confirm that the contact areas of manufactured, real measured surfaces are directly proportional to the root mean square slope and the applied load, which is predicted by fractal diffusion-based rough surface contact theory. The data predicts a complex response that deviates from this behavior. The variation in the RMS slope and the spectrum of the system related to the features in contact are further evaluated to illuminate why this property is seen in some types of surfaces and not others.


Author(s):  
TX Wu ◽  
HL Xing

A methodology that judges the performance and estimates the effects of metro-induced ground-borne vibration is presented for the mitigation measures of resilient tracks. Two criteria are proposed for the purpose of judgment and estimation, respectively. One is the force ratio obtained by comparing the forces transmitted to the track bed of the resilient track with those of a reference track. As the force ratio of the track bed does not vary with the excitation and environment conditions, it can be used for judging the performance of the ground-borne vibration, i.e. the inherent ability to mitigate vibration, of the resilient track. Another criterion is the overall frequency-weighted root-mean-square acceleration at the receivers. This criterion is used for the estimation of the real effects of the ground-borne vibration of a resilient track in practical conditions. Calculation results demonstrate that the practical effects of ground-borne vibration of the mitigation measures studied vary with the excitation and environment factors and tend to be more effective when the unevenness excitation is rougher or the monitoring points are closer to the source of vibration. The proposed criteria, the corresponding models developed, and the methodology presented exhibit both high efficiency in computation and great convenience for assessing the mitigation measures of resilient tracks.


2021 ◽  
Vol 125 (1287) ◽  
pp. 847-878
Author(s):  
F. de Lemos ◽  
J. Woodward

ABSTRACTIn this paper we present a novel approach to calculate Block Time and Fuel (BTF) consumed for an aircraft model during a flight. The BTF model computes the ground distance between the origin and destination airports, derives the flight’s cruise altitude and by integrating two institutional data sets calculates the duration and the fuel consumed for the whole of taxi-out, take-off, climb, cruise, descent, approach, landing and taxi-in phases. We use the French Association for Operational Research and Decision Support (ROADEF) 2009 Challenge flight rotation to sample our model. The statistical analysis of the results consisted of comparing BTF results for the block time and those from the ROADEF Challenge 2009 with the real ones retrieved from Flightaware® for the same origin and destination airports and aircraft model. Statistical results are reported for percentile and root mean square error, and we show that, using simple calculations, the BTF computational results for block time are in a lower percentile and have lower root mean square error than the block times used by the ROADEF 2009 Challenge. To compare the fuel consumed, we used the values for the real flights published in the literature review. We were able to verify a good fit between the BTF results and those values. Since the BTF model computational results are obtained within a few seconds, we also conclude that the BTF model is suited for flight planning and disruption recovery in commercial aviation.


2014 ◽  
Vol 501-504 ◽  
pp. 2182-2186
Author(s):  
Li Long Liu ◽  
Miao Zhou ◽  
Teng Xu Zhang ◽  
Wei Wang ◽  
Liang Ke Huang

In this study, three years of the zenith tropospheric delay (ZTD) data observed from 46 International GNSS system (IGS) sites distributed in Asian area used to assess the effectiveness and accuracy of ZTD calculated from EGNOS model, and the application of the EGNOS model are also analyzed in Asian area. Relative to IGS observed ZTD, the bias and root mean square (RMS) for ZTD calculated from EGNOS model presents an obvious variation in temporal and spatial. These results provide a reference for the study of the tropospheric delay correction model, the real-time GNSS navigation and positioning.


2016 ◽  
Vol 26 (1) ◽  
pp. 58
Author(s):  
Qiurong XIE ◽  
Zheng JIANG ◽  
Qinglu LUO ◽  
Jie LIANG ◽  
Xiaoling WANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document