Velocity analysis without picking

Geophysics ◽  
1989 ◽  
Vol 54 (2) ◽  
pp. 191-199 ◽  
Author(s):  
John L. Toldi

Conventionally, interval velocities are derived from picked stacking velocities. The velocity‐analysis algorithm proposed in this paper is also based on stacking velocities; however, it eliminates the conventional picking stage by always considering stacking velocities from the point of view of an interval‐velocity model. This view leads to a model‐based, automatic velocity‐analysis algorithm. The algorithm seeks to find an interval‐velocity model such that the stacking velocities calculated from that model give the most powerful stack. An additional penalty is incurred for models that differ in smoothness from an initial interval‐velocity model. The search for the best model is conducted by means of a conjugate‐gradient method. The connection between the interval‐velocity model and the stacking velocities plays an important role in the algorithm proposed in this paper. In the simplest case, stacking velocity is assumed to be equal to rms velocity. For the more general case, a linear theory is developed, connecting interval velocity and stacking velocity through the intermediary of traveltime. When applied to a field data set, the method produces an interval‐velocity model that explains the lateral variation in both stacking velocity and traveltime.

Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. U19-U29 ◽  
Author(s):  
Yaxun Tang ◽  
Biondo Biondi

We apply target-oriented wave-equation migration velocity analysis to a 3D field data set acquired from the Gulf of Mexico. Instead of using the original surface-recorded data set, we use a new data set synthesized specifically for velocity analysis to update subsalt velocities. The new data set is generated based on an initial unfocused target image and by a novel application of 3D generalized Born wavefield modeling, which correctly preserves velocity kinematics by modeling zero and nonzero subsurface-offset-domain images. The target-oriented inversion strategy drastically reduces the data size and the computation domain for 3D wave-equation migration velocity analysis, greatly improving its efficiency and flexibility. We apply differential semblance optimization (DSO) using the synthesized new data set to optimize subsalt velocities. The updated velocity model significantly improves the continuity of subsalt reflectors and yields flattened angle-domain common-image gathers.


Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1258-1269 ◽  
Author(s):  
Junru Jiao ◽  
Paul L. Stoffa ◽  
Mrinal K. Sen ◽  
Roustam K. Seifoullaev

Over the last few years, migration‐velocity analysis methods have been developed for 2‐D and 3‐D models by extending the assumptions and approximations used for rms velocity models. Computational requirements for these analyses have increased dramatically because top‐down layer‐stripping migration is needed to derive interval velocities directly instead of using rms velocities and then converting into interval velocities. We establish exact equations for 1‐D and 2‐D residual velocity analysis in the depth‐plane‐wave domain and use these in an iterative and interactive migration velocity analysis program. The new method updates interval velocities directly in a top‐down residual‐difference correction for all layers after prestack depth migration instead of top‐down layer‐stripping migration followed by residual analysis. This makes the new method a suitable tool for migration velocity analysis, especially for 3‐D surveys. We test the method on synthetic and field data. The field data results show that a reasonable velocity model is obtained and most common image gathers are correctly imaged using no more than four iterations.


2017 ◽  
Vol 5 (3) ◽  
pp. SJ81-SJ90 ◽  
Author(s):  
Kainan Wang ◽  
Jesse Lomask ◽  
Felix Segovia

Well-log-to-seismic tying is a key step in many interpretation workflows for oil and gas exploration. Synthetic seismic traces from the wells are often manually tied to seismic data; this process can be very time consuming and, in some cases, inaccurate. Automatic methods, such as dynamic time warping (DTW), can match synthetic traces to seismic data. Although these methods are extremely fast, they tend to create interval velocities that are not geologically realistic. We have described the modification of DTW to create a blocked dynamic warping (BDW) method. BDW generates an automatic, optimal well tie that honors geologically consistent velocity constraints. Consequently, it results in updated velocities that are more realistic than other methods. BDW constrains the updated velocity to be constant or linearly variable inside each geologic layer. With an optimal correlation between synthetic seismograms and surface seismic data, this algorithm returns an automatically updated time-depth curve and an updated interval velocity model that still retains the original geologic velocity boundaries. In other words, the algorithm finds the optimal solution for tying the synthetic to the seismic data while restricting the interval velocity changes to coincide with the initial input blocking. We have determined the application of the BDW technique on a synthetic data example and field data set.


Geophysics ◽  
1993 ◽  
Vol 58 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Claude F. Lafond ◽  
Alan R. Levander

Prestack depth migration still suffers from the problems associated with building appropriate velocity models. The two main after‐migration, before‐stack velocity analysis techniques currently used, depth focusing and residual moveout correction, have found good use in many applications but have also shown their limitations in the case of very complex structures. To address this issue, we have extended the residual moveout analysis technique to the general case of heterogeneous velocity fields and steep dips, while keeping the algorithm robust enough to be of practical use on real data. Our method is not based on analytic expressions for the moveouts and requires no a priori knowledge of the model, but instead uses geometrical ray tracing in heterogeneous media, layer‐stripping migration, and local wavefront analysis to compute residual velocity corrections. These corrections are back projected into the velocity model along raypaths in a way that is similar to tomographic reconstruction. While this approach is more general than existing migration velocity analysis implementations, it is also much more computer intensive and is best used locally around a particularly complex structure. We demonstrate the technique using synthetic data from a model with strong velocity gradients and then apply it to a marine data set to improve the positioning of a major fault.


1989 ◽  
Vol 20 (2) ◽  
pp. 301
Author(s):  
P.D. Grant

The Puffin Field is located within the Vulcan Sub-basin of the Timor sea, off the Northwest Coast of Australia. It lies within the offshore exploration permit AC/P2, operated by BHP Petroleum and its co-venturers. It is situated on the Ashmore Platform, an old Triassic horst which is normal faulted against the Swan Graben, a major Mesozoic depocentre and the regional source area. Three wells were drilled in the 1970's. Puffin-1 and Puffin-3 encountered oil in "FIT" tests from within the Maastrichtian 100 ft sand, and Puffin-2 flowed over 4000 barrels of oil per day from a slightly younger 4 m sand. On examination of the results of the Puffin wells, it was evident that there were severe velocity anomalies and differing oil water contacts in the Puffin field. The top of the 100 ft reservoir sand is at 2031.4 m subsea in Puffin-1, 2045 m subsea at Puffin-2 and 2074 m subsea at Puffin-3. The two way times to these events were 1392 ms, 1328 ms and 1398 ms respectively. The interpreted oil water contacts in Puffin-1 and Puffin-3 were 2033 and 2077 ms subsea respectively with no contact seen at Puffin-2. In an attempt to resolve these anomalies the AC/P2 joint venture undertook a detailed seismic reprocessing project of the 1980 data with special emphasis on detailed velocity analysis. This 1987 reprocessing effort involved two passes of velocity filtering and velocity analysis at every 600 m. Velocity analyses were picked on a horizon-consistent basis, such that variations in interval velocity for key horizons could be established for later use in depth conversion. Although sceptical in using stacking functions as the input velocities to depth conversion, they were used, as no viable alternative was feasible. Data quality was reliable to the top of the Palaeocene Calcilutite, and six horizons were picked with their respective velocities to this level. Analysis of the data indicated that the two major units exhibiting interval velocity variation were the Pliocene "low velocity layer" and the Eocene carbonates. Using the smoothed stacking velocity down to the Top Palaeocene Calcilutite the three wells tied the depth conversion with an accuracy of 0.5%. Below this horizon two constant interval velocities were used from well data as the quality of the seismic pick were not as reliable. To verify this model BHPP also undertook a "layer-cake" velocity approach which, although confirming the anomalous zones, could not be used laterally away from the three wells, which unfortunately all lay in a straight line. Two wells, Puffin-4 and Parry-1 were drilled in 1988 to test the resultant interpretation. The wells intersected the Top Palaeocene Calcilutite within 1% of prognosis at Puffin-4 and within 2.2% of prognosis at Parry-1, therefore confirming the stacking velocity model used in depth conversion. However, both wells came in deep to prognosis at the deeper, objective level as a result, in the case of Puffin-4, of being on the downthrown side of a small fault, and at Parry-1 due to a thickening of the Paleocene section and seismic mispicking of the Top Palaeocene Calcilutite. Had the mispick at Parry-1 been avoided then the tie would have been less than 1.0%. Both these mis-interpretations were made in the part of the section where the quality of seismic was poorest. These two results suggest that even though the depth conversion to the Top Paleocene Calcilutite is accurate to within 1%, the magnitude of the velocity variation is larger than the magnitude of the independent depth closure. The Puffin Field requires both better quality seismic below the Base Palaeocene Calcilutite, or the means to resolve the lateral extent and possible thickness of a 4 m sand away from Puffin-2. Until such a method of obtaining either better quality seismic to the objective level, or to be able to define the seismic resolution of the differing sand bodies of a minimum size of 4 m, the Puffin Field will remain a Geophysical enigma.


Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. R59-R80 ◽  
Author(s):  
Michael Warner ◽  
Andrew Ratcliffe ◽  
Tenice Nangoo ◽  
Joanna Morgan ◽  
Adrian Umpleby ◽  
...  

We have developed and implemented a robust and practical scheme for anisotropic 3D acoustic full-waveform inversion (FWI). We demonstrate this scheme on a field data set, applying it to a 4C ocean-bottom survey over the Tommeliten Alpha field in the North Sea. This shallow-water data set provides good azimuthal coverage to offsets of 7 km, with reduced coverage to a maximum offset of about 11 km. The reservoir lies at the crest of a high-velocity antiformal chalk section, overlain by about 3000 m of clastics within which a low-velocity gas cloud produces a seismic obscured area. We inverted only the hydrophone data, and we retained free-surface multiples and ghosts within the field data. We invert in six narrow frequency bands, in the range 3 to 6.5 Hz. At each iteration, we selected only a subset of sources, using a different subset at each iteration; this strategy is more efficient than inverting all the data every iteration. Our starting velocity model was obtained using standard PSDM model building including anisotropic reflection tomography, and contained epsilon values as high as 20%. The final FWI velocity model shows a network of shallow high-velocity channels that match similar features in the reflection data. Deeper in the section, the FWI velocity model reveals a sharper and more-intense low-velocity region associated with the gas cloud in which low-velocity fingers match the location of gas-filled faults visible in the reflection data. The resulting velocity model provides a better match to well logs, and better flattens common-image gathers, than does the starting model. Reverse-time migration, using the FWI velocity model, provides significant uplift to the migrated image, simplifying the planform of the reservoir section at depth. The workflows, inversion strategy, and algorithms that we have used have broad application to invert a wide-range of analogous data sets.


Geophysics ◽  
2006 ◽  
Vol 71 (2) ◽  
pp. E1-E6 ◽  
Author(s):  
Bin Wang ◽  
Volker Dirks ◽  
Patrice Guillaume ◽  
François Audebert ◽  
Duryodhan Epili

We have developed a simple but practical methodology for updating subsalt velocities using wave-equation, migration-perturbation scans. For the sake of economy and scalability (with respect to full source-receiver migration) and accuracy (with respect to common-azimuth migration), we use shot-profile, wave-equation migration. As input for subsalt-velocity analysis, we provide wave-equation migration scans with velocity scanning limited to the subsalt sediments. Throughout the migration-scan sections, we look for the best focusing or structural positioning of characteristic seismic events. The picking on the migration stacks selects the value of the best perturbation attribute (alpha-scaling factor) along with the corresponding position and local dip for the chosen seismic events. The associated, locally coherent events are then demigrated to the base of the salt horizon. Our key observation is that this process is theoretically equivalent to performing a datuming to a base of salt followed by subsalt migration of the redatumed data perturbed-velocity profiles. Thanks to this implicit redatuming of shot profiles, no ray tracing through the salt body is required. Thus, the events picked on the subsalt-velocity scans only need to be demigrated to the base of salt. For the event demigration we use 3D specular-ray tracing up to the base of the salt horizon within a predefined range of reflection angles. Event demigration produces model-independent data — time and time slope — that are then kinematically migrated using the current tomographic-inversion working model. To find a final-velocity model that will flatten best the remigrated events on common image point (CIP) angle gathers, we use the same set of demigrated observation data as the input data set for several nonlinear iterations of 3D tomographic inversion.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB191-WB207 ◽  
Author(s):  
Yaxun Tang ◽  
Biondo Biondi

We present a new strategy for efficient wave-equation migration-velocity analysis in complex geological settings. The proposed strategy has two main steps: simulating a new data set using an initial unfocused image and performing wavefield-based tomography using this data set. We demonstrated that the new data set can be synthesized by using generalized Born wavefield modeling for a specific target region where velocities are inaccurate. We also showed that the new data set can be much smaller than the original one because of the target-oriented modeling strategy, but it contains necessary velocity information for successful velocity analysis. These interesting features make this new data set suitable for target-oriented, fast and interactive velocity model-building. We demonstrate the performance of our method on both a synthetic data set and a field data set acquired from the Gulf of Mexico, where we update the subsalt velocity in a target-oriented fashion and obtain a subsalt image with improved continuities, signal-to-noise ratio and flattened angle-domain common-image gathers.


Geophysics ◽  
2007 ◽  
Vol 72 (6) ◽  
pp. U75-U88 ◽  
Author(s):  
Jintan Li ◽  
William W. Symes

The differential semblance method of velocity analysis flattens image gathers automatically by updating interval velocity to minimize the mean square difference of neighboring traces. We detail an implementation using hyperbolic normal moveout correction as the imaging method. The algorithm is fully automatic, accommodates arbitrary acquisition geometry, and outputs 1D, 2D, or 3D interval velocity models. This variant of differential semblance velocity analysis is effective within the limits of its imaging methodology: mild lateral heterogeneity and data dominated by primary events. Coherent noise events such as multiple reflections tend to degrade the quality of the velocity model estimated by differential semblance. We show how to combine differential semblance velocity analysis with dip filtering to suppress multiple reflections and thus improve considerably the accuracy of the velocity estimate. We illustrate this possibility using multiple-rich data from a 2D marine survey.


2016 ◽  
Vol 4 (01) ◽  
pp. 63
Author(s):  
Yuninggar Dwi Nugroho ◽  
Sudarmaji S

<span>The input data for pre stack time migration and pre stack depth migration is velocity model. <span>The exact velocity model can provide maximum result in seismic section. The best seismic <span>section can minimize possibility of errors during interpretation. Model based and grid based <span>tomography are used to refine the interval velocity model. The interval velocity will be used as <span>input in the pre stack depth migration. Initial interval velocity is obtained from RMS velocity<br /><span>using Dix formula. This velocity will be refined by global depth tomography method. The <span>global depth tomography method is divided into model based and grid based tomography. <span>Velocity analysis is performed along the horizon (depth model). Residual depth move out is <span>obtained from picking velocity. It is used as input in tomography method. The flat gather is <span>obtained at tenth iteration. The interval velocity that is obtained from tenth iteration has the <span>small errors. Tomography method can provide maximum result on velocity refinement. That is <span>shown by the result that the pre stack depth migration is much better than using initial interval <span>velocity. The pull up effect can be corrected by tomography method.</span></span></span></span></span></span></span></span></span></span></span></span><br /></span>


Sign in / Sign up

Export Citation Format

Share Document