Removal of static shift in two dimensions by regularized inversion

Geophysics ◽  
1991 ◽  
Vol 56 (12) ◽  
pp. 2102-2106 ◽  
Author(s):  
Catherine deGroot‐Hedlin

A common problem in magnetotelluric (MT) sounding is the presence of static shifts in the data, i.e., a vertical shifting of the log‐apparent‐resistivity versus period curves relative to regional values (Jones, 1988; Jiracek, 1990; Berdichevsky et al., 1989). These static shifts are due to the presence of small‐scale, shallow conductivity anomalies near the measurement site. Electric charge builds up on near‐surface anomalies that are small in comparison to the skin depth of the electromagnetic (EM) fields. The charge buildup produces a perturbation of the measured electric fields from their regional values that persists to arbitrarily low frequencies. Incorrect removal of these local distortions leads to incorrect interpretation of the deeper targets of investigation.

Geophysics ◽  
1994 ◽  
Vol 59 (11) ◽  
pp. 1680-1694 ◽  
Author(s):  
Wei Qian ◽  
David E. Boerner

We derive an integral equation to describe the electromagnetic response of a discretely grounded circuit. This investigation is relevant to the study of man‐made structures such as metallic fences, grounded powerlines, and pipelines, all of which may fall into the class of discretely grounded conductors. The solution developed here is an extension to existing circuit theory and takes into account the self and mutual interaction of the circuit elements. It is possible to ignore these interactions at low frequencies where the grounding impedances dominate the effective impedance of the circuit. However, at frequencies where the electromagnetic skin depth is comparable to the length between adjacent grounding points, the effective impedance of the circuit is proportional to frequency, and the inductance of the circuit dominates its electromagnetic response. Within the quasi‐static limit (i.e., where displacement currents can be neglected) electromagnetic excitation by either horizontal electric or vertical magnetic dipoles produces a constant primary electric field at high frequencies (far‐field). Thus, the electric current in the discretely grounded circuit will always be inversely proportional to frequency for these types of sources. Horizontal magnetic dipole or vertical electric dipole sources generate primary electric fields that are proportional to the inverse square root of frequency in the high frequency limit of the quasi‐static domain, and thus the current in a circuit excited by such sources will decrease as the inverse of square root of frequency. The integral equation solution derived here can be used to investigate the influence from cultural conductors on actual electromagnetic surveys and also provides further insights into the current channeling response of surficial conductors.


Geophysics ◽  
1997 ◽  
Vol 62 (2) ◽  
pp. 466-476 ◽  
Author(s):  
Philip E. Wannamaker

The resistivity model for the Sulphur Springs area in the companion paper (Part I) plus the availability of overlapping controlled‐source audiomagnetotelluric (CSAMT) and magnetotelluric (MT) data has allowed study of far‐field to near‐field transitions, source field geometries over the survey area, and scalar‐tensor impedance discrepancies. The regional setting of conductive Paleozoic sediments over resistive basement seriously reduced depth of exploration within the plane‐wave regime to about 1/20th of the transmitter‐receiver separation, rather than the traditional 1/3rd to 1/5th based on half‐space models. As frequency falls to where skin depth in the sedimentary layer exceeds its thickness, transmitter electromagnetic (EM) fields enter the resistive basement and may diffuse to the receiver with relatively little attenuation, promoting near‐field behavior. Comparisons are made of observed electric (E) and magnetic (H) fields inside and outside the caldera with EM fields computed from layered resistivity models derived from local 1-D inversion of the ρa and θ, and from simple 3-D models. First, the comparisons indicate that small‐scale structure near the transmitter does not lead to overprint effects in the impedance data at the receiver but, instead, acts as an equivalent far‐field source. Second, at both high and low frequencies, the observed E and H fields can depart substantially from those predicted by local layered models. In fact, an effective regional layering appears to control the magnetic field amplitudes and the far‐to near‐field transition in this survey area. The observed electric fields, on the other hand, are controlled by all scales of geology. When heterogeneity is important, significant departures between scalar and tensor CSAMT data can be expected, and are exacerbated when the source field is poorly coupled to the sensors. The problem is much reduced for vector CSAMT measurements where all horizontal field components are measured and the maximally coupled results are defined, but mode identification is more difficult for multidimensional structures.


Geophysics ◽  
1984 ◽  
Vol 49 (9) ◽  
pp. 1517-1533 ◽  
Author(s):  
Philip E. Wannamaker ◽  
Gerald W. Hohmann ◽  
Stanley H. Ward

The electromagnetic fields scattered by a three‐dimensional (3-D) inhomogeneity in the earth are affected strongly by boundary charges. Boundary charges cause normalized electric field magnitudes, and thus tensor magnetotelluric (MT) apparent resistivities, to remain anomalous as frequency approaches zero. However, these E‐field distortions below certain frequencies are essentially in‐phase with the incident electric field. Moreover, normalized secondary magnetic field amplitudes over a body ultimately decline in proportion to the plane‐wave impedance of the layered host. It follows that tipper element magnitudes and all MT function phases become minimally affected at low frequencies by an inhomogeneity. Resistivity structure in nature is a collection of inhomogeneities of various scales, and the small structures in this collection can have MT responses as strong locally as those of the large structures. Hence, any telluric distortion in overlying small‐scale extraneous structure can be superimposed to arbitrarily low frequencies upon the apparent resistivities of buried targets. On the other hand, the MT responses of small and large bodies have frequency dependencies that are separated approximately as the square of the geometric scale factor distinguishing the different bodies. Therefore, tipper element magnitudes as well as the phases of all MT functions due to small‐scale extraneous structure will be limited to high frequencies, so that one may “see through” such structure with these functions to target responses occurring at lower frequencies. About a 3-D conductive body near the surface, interpretation using 1-D or 2-D TE modeling routines of the apparent resistivity and impedance phase identified as transverse electric (TE) can imply false low resistivities at depth. This is because these routines do not account for the effects of boundary charges. Furthermore, 3-D bodies in typical layered hosts, with layer resistivities that increase with depth in the upper several kilometers, are even less amenable to 2-D TE interpretation than are similar 3-D bodies in uniform half‐spaces. However, centrally located profiles across geometrically regular, elongate 3-D prisms may be modeled accurately with a 2-D transverse magnetic (TM) algorithm, which implicitly includes boundary charges in its formulation. In defining apparent resistivity and impedance phase for TM modeling of such bodies, we recommend a fixed coordinate system derived using tipper‐strike, calculated at the frequency for which tipper magnitude due to the inhomogeneity of interest is large relative to that due to any nearby extraneous structure.


Geophysics ◽  
1988 ◽  
Vol 53 (7) ◽  
pp. 967-978 ◽  
Author(s):  
Alan G. Jones

Previous modeling investigations of the static shift of magnetotelluric (MT) apparent resistivity curves have limited appeal in that the electric fields used were point measurements, whereas field observations are of voltage differences. Thus, inhomogeneities of dimension of the order of the electrode line length could not be investigated. In this paper, by using a modeling algorithm that derives point voltages rather than point electric fields, I consider the effect on the MT responses of local near‐surface distorting structures, which are both outside of, and inside, the telluric electrode array. I show that static‐shift effects are of larger spatial size but of less magnitude than would be expected from conventional modeling. Also, the field observation that static shift affects only the apparent resistivity curve but not the phase response can be replicated by the voltage difference modeling. If there exists within the earth a layer whose variation in electrical resistivity along the profile can be treated in a parametric fashion, then static shift of the apparent resistivity curves can be corrected. Deriving the modal value from a sufficient number of observations for the layer resistivity is the most useful approach.


2015 ◽  
Vol 3 (1) ◽  
pp. 31 ◽  
Author(s):  
Rohani Mohd ◽  
Badrul Hisham Kamaruddin ◽  
Khulida Kirana Yahya ◽  
Elias Sanidas

The purpose of the present study is twofold: first, to investigate the true values of Muslim owner managers; second, to examine the impact of these values on entrepreneurial orientations of Muslim small-scale entrepreneurs. 850 Muslim owner managers were selected randomly using the sampling frame provided by MajlisAmanah Rakyat Malaysia (MARA). 162 completed questionnaires were collected and analyzed. For this paper only two dimensions of entrepreneurial orientations were analyzed: proactive orientation and innovative orientation. Interestingly, the findings revealed that Muslim businessmen/women are honest, loyal, disciplined and hard working. Loyalty and honesty are positively related to proactive orientation, while discipline and hard-work are positively related to innovative orientation. The findings provide implications for existing relevant theories, policy makers, practitioners and learning institutions. 


2019 ◽  
Author(s):  
Johannes P. Dürholt ◽  
Babak Farhadi Jahromi ◽  
Rochus Schmid

Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paralectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength μ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strength are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics or any scenario where movable dipolar fragments respond to external electric fields.


1995 ◽  
Vol 85 (5) ◽  
pp. 1359-1372
Author(s):  
Hsi-Ping Liu

Abstract Because of its simple form, a bandlimited, four-parameter anelastic model that yields nearly constant midband Q for low-loss materials is often used for calculating synthetic seismograms. The four parameters used in the literature to characterize anelastic behavior are τ1, τ2, Qm, and MR in the relaxation-function approach (s1 = 1/τ1 and s2 = 1/τ2 are angular frequencies defining the bandwidth, MR is the relaxed modulus, and Qm is approximately the midband quality factor when Qm ≫ 1); or τ1, τ2, Qm, and MR in the creep-function approach (s1 = 1/τ1 and s2 = 1/τ2 are angular frequencies defining the bandwidth, and Qm is approximately the midband quality factor when Qm ≫ 1). In practice, it is often the case that, for a particular medium, the quality factor Q(ω0) and phase velocity c(ω0) at an angular frequency ω0 (s1 < ω0 < s2; s1 < ω0 < s2) are known from field measurements. If values are assigned to τ1 and τ2 (τ2 < τ1), or to τ1 and τ2 (τ2 < τ1), then the two remaining parameters, Qm and MR, or Qm and MR, can be obtained from Q(ω0). However, for highly attenuative media, e.g., Q(ω0) ≦ 5, Q(ω) can become highly skewed and negative at low frequencies (for the relaxation-function approach) or at high frequencies (for the creep-function approach) if this procedure is followed. A negative Q(ω) is unacceptable because it implies an increase in energy for waves propagating in a homogeneous and attenuative medium. This article shows that given (τ1, τ2, ω0) or (τ1, τ2, ω0), a lower limit of Q(ω0) exists for a bandlimited, four-parameter anelastic model. In the relaxation-function approach, the minimum permissible Q(ω0) is given by ln [(1 + ω20τ21)/(1 + ω20τ22)]/{2 arctan [ω0(τ1 − τ2)/(1 + ω20τ1τ2)]}. In the creep-function approach, the minimum permissible Q(ω0) is given by {2 ln (τ1/τ2) − ln [(1 + ω20τ21)/(1 + ω20τ22)]}/{2 arctan [ω0(τ1 − τ2)/(1 + ω20τ1τ2)]}. The more general statement that, for a given set of relaxation mechanisms, a lower limit exists for Q(ω0) is also shown to hold. Because a nearly constant midband Q cannot be achieved for highly attenuative media using a four-parameter anelastic model, a bandlimited, six-parameter anelastic model that yields a nearly constant midband Q for such media is devised; an expression for the minimum permissible Q(ω0) is given. Six-parameter anelastic models with quality factors Q ∼ 5 and Q ∼ 16, constant to 6% over the frequency range 0.5 to 200 Hz, illustrate this result. In conformity with field observations that Q(ω) for near-surface earth materials is approximately constant over a wide frequency range, the bandlimited, six-parameter anelastic models are suitable for modeling wave propagation in highly attenuative media for bandlimited time functions in engineering and exploration seismology.


2021 ◽  
Author(s):  
Michael Haugeneder ◽  
Tobias Jonas ◽  
Dylan Reynolds ◽  
Michael Lehning ◽  
Rebecca Mott

<p>Snowmelt runoff predictions in alpine catchments are challenging because of the high spatial variability of t<span>he snow cover driven by </span>various snow accumulation and ablation processes. In spring, the coexistence of bare and snow-covered ground engages a number of processes such as the enhanced lateral advection of heat over partial snow cover, the development of internal boundary layers, and atmospheric decoupling effects due to increasing stability at the snow cover. The interdependency of atmospheric conditions, topographic settings and snow coverage remains a challenge to accurately account for these processes in snow melt models.<br>In this experimental study, we used an Infrared Camera (VarioCam) pointing at thin synthetic projection screens with negligible heat capacity. Using the surface temperature of the screen as a proxy for the air temperature, we obtained a two-dimensional instantaneous measurement. Screens were installed across the transition between snow-free and snow-covered areas. With IR-measurements taken at 10Hz, we capture<span> the dynamics of turbulent temperature fluctuations</span><span> </span>over the patchy snow cover at high spatial and temporal resolution. From this data we were able to obtain high-frequency, two-dimensional windfield estimations adjacent to the surface.</p><p>Preliminary results show the formation of a stable internal boundary layer (SIBL), which was temporally highly variable. Our data suggest that the SIBL height is very shallow and strongly sensitive to the mean near-surface wind speed. Only strong gusts were capable of penetrating through this SIBL leading to an enhanced energy input to the snow surface.</p><p>With these type of results from our experiments and further measurements this spring we aim to better understand small scale energy transfer processes over patch snow cover and it’s dependency on the atmospheric conditions, enabling to improve parameterizations of these processes in coarser-resolution snow melt models.</p>


2021 ◽  
Author(s):  
Shashwat Shukla ◽  
Gerald Wesley Patterson

<p>One of the unique candidates to explore the evolution of physical surface processes on the Moon is Tycho, a dark haloed impact crater representing well-preserved bright ray pattern and intact crater morphology. Sampling of the central peak in such complex crater formation proves significant in terms of unraveling intriguing science of the lunar interior. With the current state-of-the-art radar technology, it is possible to evaluate the response of the geologic features constrained in the near surface and subsurface regolith environments. This can be achieved by modelling the dielectric constant of media, which is a physical parameter crucial for furthering our knowledge about the distribution of materials within different stratigraphic layers at multiple depths. Here, we used the applicability of Mini-RF S-band data augmented with a deep learning based inversion model to retrieve the dielectric variations over the central peak of the Tycho crater. A striking observation is made in certain regions of the central peak, wherein we observe anomalously high dielectric constant, not at all differentiated in the hyperspectral image and first Stokes parameter image, which usually is a representation of retrieved backscatter of the target. The results are also supported by comparing the variations in the scattering mechanisms. We found those particular regions to be associated with high degree of depolarization, thereby attributing to the presence of cm- to m- scale scatterers buried within a low dielectric layer that are not big enough to produce even-bounce geometry for the radar wave. Moreover, we also observe high rock concentration in the central peak slopes from DIVINER data and NAC images, indicating the exposure of clasts ranging in size from 10 meter to 100s of meter. Furthermore, from surface temperature data, these distinctive outcrops sense warmer temperature at night than the surrounding, which suggests the existence of thermal skin depth in such vicinities. Interestingly, we are able to quantify the pessimistic dielectric constant limit of the large boulder in the middle of the central peak, observable at the Mini-RF radar wavelength, as 4.54 + j0.077. Compared to the expected dielectric constant of rocks, this value is lowered significantly. One probable reason could be the emergence of small radar shadows due to the rugged surface of the boulder on the radar illuminated portion. From our analysis, we showcase the anomalous dielectric variability of Tycho central peak, thereby providing new insights into the evolution of the impact cratering process that could be important for both science and necessary for framing human or robotic exploration strategies.  </p>


Sign in / Sign up

Export Citation Format

Share Document