Transverse isotropy versus lateral heterogeneity in the inversion of P-wave reflection traveltimes

Geophysics ◽  
1998 ◽  
Vol 63 (1) ◽  
pp. 204-212 ◽  
Author(s):  
Vladimir Y. Grechka

Nonelliptic transverse isotropy may cause pronounced nonhyperbolic moveout of long‐spread P-wave reflection data. Lateral heterogeneity may alter the moveout in much the same way, and one can expect that a given P-wave reflection moveout may be interpreted equally well in terms of parameters of homogeneous transversely isotropic (TI) or laterally heterogeneous (LH) isotropic models. Here, the common‐midpoint (CMP) moveout of a P-wave reflected from a horizontal interface beneath a weakly laterally heterogeneous medium that is also weakly transversely isotropic is represented analytically in the form similar to that in homogeneous TI media. Both the normal‐moveout (NMO) velocity and the quartic moveout coefficient contain derivatives of the zero‐ offset traveltime t0 and the NMO velocity Vnmo with respect to the lateral coordinate. Despite the presence of heterogeneity, nonhyperbolic velocity analysis can be performed in the same way as in homogeneous TI models. If all parameters of the medium are linear functions of the lateral coordinate, heterogeneity does not influence the results of inversion for the anisotropic parameter η. However, to find η in the case of general lateral heterogeneity, the second derivative of Vnmo and the fourth derivative of t0 are needed. Since these high‐order derivatives are calculated from the data measured at discrete points by numerical differentiation, stability of η estimation is further reduced as compared to that in homogeneous TI media. Consequently, the trade‐off between anisotropy and heterogeneity significantly complicates the inversion of P-wave reflection traveltimes, even in the simplest model of a single plane layer.

Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. C175-C185 ◽  
Author(s):  
Ivan Pšenčík ◽  
Véronique Farra

We have developed approximate nonhyperbolic P-wave moveout formulas applicable to weakly or moderately anisotropic media of arbitrary anisotropy symmetry and orientation. Instead of the commonly used Taylor expansion of the square of the reflection traveltime in terms of the square of the offset, we expand the square of the reflection traveltime in terms of weak-anisotropy (WA) parameters. No acoustic approximation is used. We specify the formulas designed for anisotropy of arbitrary symmetry for the transversely isotropic (TI) media with the axis of symmetry oriented arbitrarily in the 3D space. Resulting formulas depend on three P-wave WA parameters specifying the TI symmetry and two angles specifying the orientation of the axis of symmetry. Tests of the accuracy of the more accurate of the approximate formulas indicate that maximum relative errors do not exceed 0.3% or 2.5% for weak or moderate P-wave anisotropy, respectively.


Geophysics ◽  
1993 ◽  
Vol 58 (6) ◽  
pp. 883-888 ◽  
Author(s):  
Ki Young Kim ◽  
Keith H. Wrolstad ◽  
Fred Aminzadeh

Velocity anisotropy should be taken into account when analyzing the amplitude variation with offset (AVO) response of gas sands encased in shales. The anisotropic effects on the AVO of gas sands in transversely isotropic (TI) media are reviewed. Reflection coefficients in TI media are computed using a planewave formula based on ray theory. We present results of modeling special cases of exploration interest having positive reflectivity, near‐zero reflectivity, and negative reflectivity. The AVO reflectivity in anisotropic media can be decomposed into two parts; one for isotropy and the other for anisotropy. Zero‐offset reflectivity and Poisson’s ratio contrast are the most significant parameters for the isotropic component while the δ difference (Δδ) between shale and gas sand is the most important factor for the anisotropic component. For typical values of Tl anisotropy in shale (positive δ and ε), both δ difference (Δδ) and ε difference (Δε) amplify AVO effects. For small angles of incidence, Δδ plays an important role in AVO while Δε dominates for large angles of incidence. For typical values of δ and ε, the effects of anisotropy in shale are: (1) a more rapid increase in AVO for Class 3 and Class 2 gas sands, (2) a more rapid decrease in AVO for Class 1 gas sands, and (3) a shift in the offset of polarity reversal for some Class 1 and Class 2 gas sands.


Geophysics ◽  
2001 ◽  
Vol 66 (3) ◽  
pp. 904-910 ◽  
Author(s):  
Vladimir Grechka ◽  
Andres Pech ◽  
Ilya Tsvankin ◽  
Baoniu Han

Transverse isotropy with a tilted symmetry axis (TTI media) has been recognized as a common feature of shale formations in overthrust areas, such as the Canadian Foothills. Since TTI layers cause serious problems in conventional imaging, it is important to be able to reconstruct the velocity model suitable for anisotropic depth migration. Here, we discuss the results of anisotropic parameter estimation on a physical‐modeling data set. The model represents a simplified version of a typical overthrust section from the Alberta Foothills, with a horizontal reflector overlaid by a bending transversely isotropic layer. Assuming that the TTI layer is homogeneous and the symmetry axis stays perpendicular to its boundaries, we invert P-wave normal‐moveout (NMO) velocities and zero‐offset traveltimes for the symmetry‐direction velocity V0 and the anisotropic parameters ε and δ. The coefficient ε is obtained using the traveltimes of a wave that crosses a dipping TTI block and reflects from the bottom of the model. The inversion for ε is based on analytic expressions for NMO velocity in media with intermediate dipping interfaces. Our estimates of both anisotropic coefficients are close to their actual values. The errors in the inversion, which are associated primarily with the uncertainties in picking the NMO velocities and traveltimes, can be reduced by a straighforward modification of the acquisition geometry. It should be emphasized that the moveout inversion also gives an accurate estimate of the thickness of the TTI layer, thus reconstructing the correct depth scale of the section. Although the physical model used here was relatively simple, our results demonstrate the principal feasibility of anisotropic velocity analysis and imaging in overthrust areas. The main problems in anisotropic processing for TTI models are likely to be caused by the lateral variation of the velocity field and overall structural complexity.


Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. U87-U96 ◽  
Author(s):  
Mamoru Takanashi ◽  
Ilya Tsvankin

One of the most serious problems in anisotropic velocity analysis is the trade-off between anisotropy and lateral heterogeneity, especially if velocity varies on a scale smaller than the maximum offset. We have developed a P-wave MVA (migration velocity analysis) algorithm for transversely isotropic (TI) models that include layers with small-scale lateral heterogeneity. Each layer is described by constant Thomsen parameters [Formula: see text] and [Formula: see text] and the symmetry-direction velocity [Formula: see text] that varies as a quadratic function of the distance along the layer boundaries. For tilted TI media (TTI), the symmetry axis is taken orthogonal to the reflectors. We analyzed the influence of lateral heterogeneity on image gathers obtained after prestack depth migration and found that quadratic lateral velocity variation in the overburden can significantly distort the moveout of the target reflection. Consequently, medium parameters beneath the heterogeneous layer(s) are estimated with substantial error, even when borehole information (e.g., check shots or sonic logs) is available. Because residual moveout in the image gathers is highly sensitive to lateral heterogeneity in the overburden, our algorithm simultaneously inverts for the interval parameters of all layers. Synthetic tests for models with a gently dipping overburden demonstrate that if the vertical profile of the symmetry-direction velocity [Formula: see text] is known at one location, the algorithm can reconstruct the other relevant parameters of TI models. The proposed approach helps increase the robustness of anisotropic velocity model-building and enhance image quality in the presence of small-scale lateral heterogeneity in the overburden.


Geophysics ◽  
2003 ◽  
Vol 68 (5) ◽  
pp. 1600-1610 ◽  
Author(s):  
Andres Pech ◽  
Ilya Tsvankin ◽  
Vladimir Grechka

Nonhyperbolic (long‐spread) moveout provides essential information for a number of seismic inversion/processing applications, particularly for parameter estimation in anisotropic media. Here, we present an analytic expression for the quartic moveout coefficient A4 that controls the magnitude of nonhyperbolic moveout of pure (nonconverted) modes. Our result takes into account reflection‐point dispersal on irregular interfaces and is valid for arbitrarily anisotropic, heterogeneous media. All quantities needed to compute A4 can be evaluated during the tracing of the zero‐offset ray, so long‐spread moveout can be modeled without time‐consuming multioffset, multiazimuth ray tracing. The general equation for the quartic coefficient is then used to study azimuthally varying nonhyperbolic moveout of P‐waves in a dipping transversely isotropic (TI) layer with an arbitrary tilt ν of the symmetry axis. Assuming that the symmetry axis is confined to the dip plane, we employed the weak‐anisotropy approximation to analyze the dependence of A4 on the anisotropic parameters. The linearized expression for A4 is proportional to the anellipticity coefficient η ≈ ε − δ and does not depend on the individual values of the Thomsen parameters. Typically, the magnitude of nonhyperbolic moveout in tilted TI media above a dipping reflector is highest near the reflector strike, whereas deviations from hyperbolic moveout on the dip line are substantial only for mild dips. The azimuthal variation of the quartic coefficient is governed by the tilt ν and reflector dip φ and has a much more complicated character than the NMO–velocity ellipse. For example, if the symmetry axis is vertical (VTI media, ν = 0) and the dip φ < 30°, A4 goes to zero on two lines with different azimuths where it changes sign. If the symmetry axis is orthogonal to the reflector (this model is typical for thrust‐and‐fold belts), the strike‐line quartic coefficient is defined by the well‐known expression for a horizontal VTI layer (i.e., it is independent of dip), while the dip‐line A4 is proportional to cos4 φ and rapidly decreases with dip. The high sensitivity of the quartic moveout coefficient to the parameter η and the tilt of the symmetry axis can be exploited in the inversion of wide‐azimuth, long‐spread P‐wave data for the parameters of TI media.


Geophysics ◽  
1994 ◽  
Vol 59 (3) ◽  
pp. 450-463
Author(s):  
J. H. Rosenbaum

The assumption that the earth is made up of planeparallel, homogeneous, elastic layers, which can exhibit transverse isotropy and moderate constant‐Q attenuation, leads to an effective method of modeling the response from a point source into a long spread of seismometer stations. Most of the computations are carried out in the complex frequency and complex horizontal wavenumber domains. Minimum sampling criteria are based on an algorithm that suppresses time and distance aliasing at the expense of the large dynamic range available on the digital computer. Other artifacts can be identified and are removed by additional wavenumber filtering. Computational effort is almost independent of the number of detectors and their nature. The structure and symmetry properties of the propagator matrices describing the response are the same for isotropic and transversely isotropic layers. Synthetic seismic panels for a regional model of a west Texas well site exhibit strong, shot‐generated surface waves. A very simple model, based on a south Texas well site, shows the effects of transverse isotropy and the reverberatory nature of converted signals generated by a surface P‐wave.


Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1305-1315 ◽  
Author(s):  
Hongbo Zhou ◽  
George A. McMechan

An analytical formula for geometrical spreading is derived for a horizontally layered transversely isotropic medium with a vertical symmetry axis (VTI). With this expression, geometrical spreading can be determined using only the anisotropy parameters in the first layer, the traveltime derivatives, and the source‐receiver offset. Explicit, numerically feasible expressions for geometrical spreading are obtained for special cases of transverse isotropy (weak anisotropy and elliptic anisotropy). Geometrical spreading can be calculated for transversly isotropic (TI) media by using picked traveltimes of primary nonhyperbolic P-wave reflections without having to know the actual parameters in the deeper subsurface; no ray tracing is needed. Synthetic examples verify the algorithm and show that it is numerically feasible for calculation of geometrical spreading. For media with a few (4–5) layers, relative errors in the computed geometrical spreading remain less than 0.5% for offset/depth ratios less than 1.0. Errors that change with offset are attributed to inaccuracy in the expression used for nonhyberbolic moveout. Geometrical spreading is most sensitive to errors in NMO velocity, followed by errors in zero‐offset reflection time, followed by errors in anisotropy of the surface layer. New relations between group and phase velocities and between group and phase angles are shown in appendices.


Geophysics ◽  
2000 ◽  
Vol 65 (1) ◽  
pp. 232-246 ◽  
Author(s):  
Vladimir Grechka ◽  
Ilya Tsvankin

Just as the transversely isotropic model with a vertical symmetry axis (VTI media) is typical for describing horizontally layered sediments, transverse isotropy with a tilted symmetry axis (TTI) describes dipping TI layers (such as tilted shale beds near salt domes) or crack systems. P-wave kinematic signatures in TTI media are controlled by the velocity [Formula: see text] in the symmetry direction, Thomsen’s anisotropic coefficients ε and δ, and the orientation (tilt ν and azimuth β) of the symmetry axis. Here, we show that all five parameters can be obtained from azimuthally varying P-wave NMO velocities measured for two reflectors with different dips and/or azimuths (one of the reflectors can be horizontal). The shear‐wave velocity [Formula: see text] in the symmetry direction, which has negligible influence on P-wave kinematic signatures, can be found only from the moveout of shear waves. Using the exact NMO equation, we examine the propagation of errors in observed moveout velocities into estimated values of the anisotropic parameters and establish the necessary conditions for a stable inversion procedure. Since the azimuthal variation of the NMO velocity is elliptical, each reflection event provides us with up to three constraints on the model parameters. Generally, the five parameters responsible for P-wave velocity can be obtained from two P-wave NMO ellipses, but the feasibility of the moveout inversion strongly depends on the tilt ν. If the symmetry axis is close to vertical (small ν), the P-wave NMO ellipse is largely governed by the NMO velocity from a horizontal reflector Vnmo(0) and the anellipticity coefficient η. Although for mild tilts the medium parameters cannot be determined separately, the NMO-velocity inversion provides enough information for building TTI models suitable for time processing (NMO, DMO, time migration). If the tilt of the symmetry axis exceeds 30°–40° (e.g., the symmetry axis can be horizontal), it is possible to find all P-wave kinematic parameters and construct the anisotropic model in depth. Another condition required for a stable parameter estimate is that the medium be sufficiently different from elliptical (i.e., ε cannot be close to δ). This limitation, however, can be overcome by including the SV-wave NMO ellipse from a horizontal reflector in the inversion procedure. While most of the analysis is carried out for a single layer, we also extend the inversion algorithm to vertically heterogeneous TTI media above a dipping reflector using the generalized Dix equation. A synthetic example for a strongly anisotropic, stratified TTI medium demonstrates a high accuracy of the inversion (subject to the above limitations).


Sign in / Sign up

Export Citation Format

Share Document