Variogram analysis of helicopter magnetic data to identify paleochannels of the Omaruru River, Namibia

Geophysics ◽  
1999 ◽  
Vol 64 (3) ◽  
pp. 785-794 ◽  
Author(s):  
Stefan Maus ◽  
K. P. Sengpiel ◽  
B. Röttger ◽  
B. Siemon ◽  
E. A. W. Tordiffe

The geomagnetic field over sedimentary basins is very sensitive to variations in basement depth. Therefore, magnetic surveys are widely used to map basement topography in petroleum and groundwater exploration. We propose variogram analysis as a more accurate alternative to power spectral methods. Data variograms are computed from aeromagnetic flight‐line data. To estimate depth, the data variograms are compared with model variograms for a range of source depths. We use the exact space domain counterparts of a fractal power spectral model as model variograms. To demonstrate the utility of this method for groundwater exploration, we map the basement topography of the Omaruru Alluvial Plains in Namibia. A comparison with electromagnetic (EM) resistivities and drilling information confirms the high accuracy—but also the limitations—of variogram analysis depth. Variogram analysis makes maximum use of short‐wavelength contributions to the magnetic signal, which is the key to the resolution of shallow basement topography. Moreover, by using a realistic source model and avoiding extensive data preconditioning and the transform to wavenumber domain, variogram analysis is likely to provide improved magnetic depth estimates even for deep basins.

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Loïc Huder ◽  
Nicolas Gillet ◽  
Christopher C. Finlay ◽  
Magnus D. Hammer ◽  
Hervé Tchoungui

Abstract We present the geomagnetic field model COV-OBS.x2 that covers the period 1840–2020. It is primarily constrained by observatory series, satellite data, plus older surveys. Over the past two decades, we consider annual differences of 4-monthly means at ground-based stations (since 1996), and virtual observatory series derived from magnetic data of the satellite missions CHAMP (over 2001–2010) and Swarm (since 2013). A priori information is needed to complement the constraints carried by geomagnetic records and solve the ill-posed geomagnetic inverse problem. We use for this purpose temporal cross-covariances associated with auto-regressive stochastic processes of order 2, whose parameters are chosen so as to mimic the temporal power spectral density observed in paleomagnetic and observatory series. We aim this way to obtain as far as possible realistic posterior model uncertainties. These can be used to infer for instance the core dynamics through data assimilation algorithms, or an envelope for short-term magnetic field forecasts. We show that because of the projection onto splines, one needs to inflate the formal model error variances at the most recent epochs, in order to account for unmodeled high frequency core field changes. As a by-product of the core field model, we co-estimate the external magnetospheric dipole evolution on periods longer than 2 years. It is efficiently summarized as the sum of a damped oscillator (of period 10.5 years and decay rate 55 years), plus a short-memory (6 years) damped random walk.


2021 ◽  
Vol 5 (2) ◽  
pp. 511-532
Author(s):  
Aniefiok Akpaneno ◽  
Matthew Joshua ◽  
K. R. Ekundayo

Solar quiet current (S_q) and Equatorial Electrojet (EEJ) are two current systems which are produced by electric current in the ionosphere.  The enhancement of the horizontal magnetic field is the EEJ. This research is needed for monitoring equatorial geomagnetic current which causes atmospheric instabilities and affects high frequency and satellite communication. This study presents the longitudinal and latitudinal variation of equatorial electrojet signature at stations within the 96°mm and 210°mm African and Asian sectors respectively during quiet condition. Data from eleven observatories were used for this study. The objectives was  to determine the longitudinal and latitudinal geomagnetic field variations during solar quiet conditions, Investigate monthly variation and diurnal transient seasonal variation; Measure the strength of the EEJ at stations within the same longitudinal sectors and find out the factors responsible for the longitudinal and latitudinal variation of EEJ. Horizontal (H) component of geomagnetic field for the year 2008 from Magnetic Data Acquisition System (MAGDAS) network were used for the study. The International Quiet Days (IQDs) were used to identify quiet days. Daily baseline values for each of the geomagnetic element H  were obtained.  The monthly average of the diurnal variation was found. The seasonal variation of dH was found. Results showed that: The longitudinal and latitudinal variation in the dH differs in magnitude from one station to another within the same longitude due to the difference in the influence of the EEJ on them.


Geophysics ◽  
2021 ◽  
pp. 1-47
Author(s):  
Rukuan Xie ◽  
Shengqing Xiong ◽  
Shuling Duan ◽  
Jinlong Wang ◽  
Ping Wang ◽  
...  

The total-field magnetic anomaly [Formula: see text] is an approximation of the projection [Formula: see text] of the magnetic anomaly vector [Formula: see text] onto the normal geomagnetic field [Formula: see text]. However, for highly magnetic sources, the approximation error of [Formula: see text] cannot be ignored. To reduce the error, we have developed a method for calculating [Formula: see text] by using airborne vector magnetic data based on the vector relationship of geomagnetic field [Formula: see text]. The calculation uses the magnitude of the vectors [Formula: see text], [Formula: see text], and [Formula: see text] through a simple approach. To ensure that each magnitude has the same level, we normalize the magnitude of [Formula: see text] using the total-field magnetic data measured by the scalar magnetic sensor. The method is applied to the measured airborne vector magnetic data at the Qixin area of the East Tianshan Mountains in China. The results indicate that the calculated [Formula: see text] has high precision and can distinguish the approximation error less than 3.5 nT. We also analyze the characteristics of the approximation error that are caused by the effects of different total magnetization inclinations. These error characteristics are used to predict the total magnetization inclination of a 2D magnetic source based on the measured airborne vector magnetic data.


2021 ◽  
Author(s):  
Pauline Le Maire ◽  
Denis Thieblemont ◽  
Marc Munschy ◽  
Guillaume Martelet ◽  
Geoffroy Mohn

<p>Continent-Ocean Transitions (COT) and ultra-slow spreading ridges, floored by wide area of exhumed serpentinized mantle, bear strong amplitude magnetic lineations. However, whether these anomalies are linked to inversions of the direction of the magnetization (therefore characterized as isochrones of seafloor spreading) or to structural and lithological contrasts remains an open question. Generally, marine magnetic data acquired at sea surface along profiles, are too low resolution to image the intensity variations of the magnetic field at a kilometric scale. Performing a dense deep tow magnetic survey at a present-day COT or ultra-slow spreading system would be better to determine the sources of the magnetic signal but remains expensive. To go ahead, a valuable alternative to address these questions is to record the magnetic signal on ophiolite representing remnants of COT and oceanic systems sampled in orogenic system. We worked on the Chenaillet Ophiolite (French Alps), which represents a fossil COT or ultra-slow spreading system integrated to the Alpine orogeny. This ophiolite escaped high-pressure metamorphism and has only been weakly deformed during Alpine orogeny, preserving its pre-orogenic structure.</p><p>We performed an UAV magnetic survey using fluxgate magnetometers in complex conditions due to the altitude (> 1800 m), the strong topography variations and the weather conditions (negative temperatures, snow). Despite these difficulties, which highlight the viability of UAV for geophysical measurements, a survey of 20 square kilometers with 219 km of profiling was completed 100 m above ground level. Flight line spacing is 100 m above the ophiolitic basement and 200 m above the sedimentary units. Another magnetic UAV survey was flown with another UAV to map a small area 10 m above ground level. Magnetic anomaly maps were computed after standard processing (e.g., calibration/compensation, temporal variation and regional magnetic field corrections, levelling).</p><p>Our first results evidence well-defined magnetic anomalies clearly linked to serpentinite. This shows that the magnetic signal is of sufficient resolution to contribute to a revision of the cartography of the massif combining geological observations and magnetic data.</p><p>In addition, the magnetic susceptibility was measured on 60 outcrops, to support interpretation.</p><p>In this presentation, we focus on the magnetic acquisition campaigns, processing and 2D/3D interpretations by forward modelling and data inversion. Lastly, two items are discussed: 1) contribution of magnetic UAV surveys for geological mapping; and 2) implication of the results on the Chenaillet massif to discuss the contribution of magnetic mapping to the understanding of the TOC or ultra-slow spreading system.</p>


2021 ◽  
Author(s):  
Alan Aitken ◽  
Lu Li ◽  
Bernd Kulessa ◽  
Thomas Jordan ◽  
Joanne Whittaker ◽  
...  

<p>Subglacial and ice-sheet marginal sedimentary basins have very different physical properties to crystalline bedrock and, therefore, form distinct conditions that influence the flow of ice above. Sedimentary rocks are particularly soft and erodible, and therefore capable of sustaining layers of subglacial till that may deform to facilitate fast ice flow downstream. Furthermore, sedimentary rocks are relatively permeable and thus allow for enhanced fluid flux, with associated impacts on ice-sheet dynamics, including feedbacks with subglacial hydrologic systems and transport of heat to the ice-sheet bed. Despite the importance for ice-sheet dynamics there is, at present, no comprehensive record of sedimentary basins in the Antarctic continent, limiting our capacity to investigate these influences. Here we develop the first version of an Antarctic-wide spatial database of sedimentary basins, their geometries and physical attributes. We emphasise the definition of in-situ and undeformed basins that retain their primary characteristics, including relative weakness and high permeability, and therefore are more likely to influence ice sheet dynamics. We define the likely extents and nature of sedimentary basins, considering a range of geological and geophysical data, including: outcrop observations, gravity and magnetic data, radio-echo sounding data and passive and active-source seismic data. Our interpretation also involves derivative products from these data, including analyses guided by machine learning. The database includes for each basin its defining characteristics in the source datasets, and interpreted information on likely basin age, sedimentary thickness, surface morphology and tectonic type. The database is constructed in ESRI geodatabase format and is suitable for incorporation in multifaceted data-interpretation and modelling procedures. It can be readily updated given new information. We define extensive basins in both East and West Antarctica, including major regions in the Ross and Weddell Sea embayments and the Amundsen Sea region of West Antarctica, and the Wilkes, Aurora and Recovery subglacial basins of East Antarctica. The compilation includes smaller basins within crystalline-bedrock dominated areas such as the Transantarctic Mountains, the Antarctic Peninsula and Dronning Maud Land. The distribution of sedimentary basins reveals the combined influence of the tectonic and glacial history of Antarctica on the current and future configuration of the Antarctic Ice Sheet and highlights areas in which the presence of dynamically-evolving subglacial till layers and the exchange of groundwater and heat with the ice sheet bed  are more likely, contributing to dynamic behaviour of the Antarctic Ice Sheet.  </p>


Micromachines ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 642
Author(s):  
Guanghui Hu ◽  
Hong Wan ◽  
Xinxin Li

Due to its widespread presence and independence from artificial signals, the application of geomagnetic field information in indoor pedestrian navigation systems has attracted extensive attention from researchers. However, for indoors environments, geomagnetic field signals can be severely disturbed by the complicated magnetic, leading to reduced positioning accuracy of magnetic-assisted navigation systems. Therefore, there is an urgent need for methods which screen out undisturbed geomagnetic field data for realizing the high accuracy pedestrian inertial navigation indoors. In this paper, we propose an algorithm based on a one-dimensional convolutional neural network (1D CNN) to screen magnetic field data. By encoding the magnetic data within a certain time window to a time series, a 1D CNN with two convolutional layers is designed to extract data features. In order to avoid errors arising from artificial labels, the feature vectors will be clustered in the feature space to classify the magnetic data using unsupervised methods. Our experimental results show that this method can distinguish the geomagnetic field data from indoors disturbed magnetic data well and further significantly improve the calculation accuracy of the heading angle. Our work provides a possible technical path for the realization of high-precision indoor pedestrian navigation systems.


1977 ◽  
Vol 17 (1) ◽  
pp. 85
Author(s):  
Robert J. Whiteley ◽  
Barry F. Long ◽  
David A. Pratt

The magnetic method is used at many stages of a modern petroleum exploration program. Effective interpretation techniques are required to extract maximum geological information from magnetic data. Those techniques which provide the greatest flexibility and make full use of the talents of experienced interpreters are generally of a semi-automated and interactive nature.There are several practical methods for semi-automated quantitative magnetic interpretation in sedimentary basins. Initial interpretation can be achieved by automatic calculation of characteristic anomaly parameters continuously along original or processed magnetic data profiles. Detailed interpretation of more subtle magnetic features can then follow by theoretical anomaly comparison with field anomalies using interactive portfolio modelling or by direct computation.Examples of the use of these semi-automated techniques in the interpretation of basement and intra-sedimentary magnetic anomalies show that combined magnetic and seismic interpretations can provide considerable insight into the structural processes which have operated in a sedimentary basin.


1999 ◽  
Vol 39 (1) ◽  
pp. 494
Author(s):  
I. Kivior ◽  
D. Boyd

Aeromagnetic surveys have been generally regarded in petroleum exploration as a reconnaissance tool for major structures. They were used commonly in the early stages of exploration to delineate the shape and depth of the sedimentary basin by detecting the strong magnetic contrast between the sediments and the underlying metamorphic basement. Recent developments in the application of computer technology to the study of the earth's magnetic field have significantly extended the scope of aeromagnetic surveys as a tool in the exploration for hydrocarbons. In this paper the two principal methods used in the analysis and interpretation of aeromagnetic data over sedimentary basins are: 1) energy spectral analysis applied to gridded data; and, 2) automatic curve matching applied to profile data. It is important to establish the magnetic character of sedimentary and basement rocks, and to determine the regional magnetic character of the area by applying energy spectral analysis. Application of automatic curve matching to profile data can provide results from the sedimentary section and deeper parts of a basin. High quality magnetic data from an experimental aeromagnetic survey flown over part of the Eromanga/Cooper Basin has recently been interpreted using this new approach. From this survey it is possible to detect major structures such as highs and troughs in the weakly magnetic basement, as well as pick out faults, and magnetic layers in the sedimentary section. The results are consistent with interpretation from seismic and demonstrate that aeromagnetic data can be used to assist seismic interpretation, for example to interpolate between widely spaced seismic lines and sometimes to locate structures which can not be detected from seismic surveys. This new approach to the interpretation of aeromagnetic data can provide a complementary tool for hydrocarbon exploration, which is ideal for logistically difficult terrain and environmentally sensitive areas.


Sign in / Sign up

Export Citation Format

Share Document