THE STUDY OF LONGITUDINAL AND LATITUDINAL VARIATION OF EQUATORIAL ELECTROJET SIGNATURE AT STATIONS WITHIN THE 96°MM AND 210°MM AFRICAN AND ASIAN SECTORS RESPECTIVELY UNDER QUIET CONDITIONS.

2021 ◽  
Vol 5 (2) ◽  
pp. 511-532
Author(s):  
Aniefiok Akpaneno ◽  
Matthew Joshua ◽  
K. R. Ekundayo

Solar quiet current (S_q) and Equatorial Electrojet (EEJ) are two current systems which are produced by electric current in the ionosphere.  The enhancement of the horizontal magnetic field is the EEJ. This research is needed for monitoring equatorial geomagnetic current which causes atmospheric instabilities and affects high frequency and satellite communication. This study presents the longitudinal and latitudinal variation of equatorial electrojet signature at stations within the 96°mm and 210°mm African and Asian sectors respectively during quiet condition. Data from eleven observatories were used for this study. The objectives was  to determine the longitudinal and latitudinal geomagnetic field variations during solar quiet conditions, Investigate monthly variation and diurnal transient seasonal variation; Measure the strength of the EEJ at stations within the same longitudinal sectors and find out the factors responsible for the longitudinal and latitudinal variation of EEJ. Horizontal (H) component of geomagnetic field for the year 2008 from Magnetic Data Acquisition System (MAGDAS) network were used for the study. The International Quiet Days (IQDs) were used to identify quiet days. Daily baseline values for each of the geomagnetic element H  were obtained.  The monthly average of the diurnal variation was found. The seasonal variation of dH was found. Results showed that: The longitudinal and latitudinal variation in the dH differs in magnitude from one station to another within the same longitude due to the difference in the influence of the EEJ on them.

2021 ◽  
Vol 5 (1) ◽  
pp. 539-557
Author(s):  
Aniefiok Akpaneno ◽  
O. N. Abdulahi

This research is monitoring equatorial geomagnetic current which causes atmospheric instabilities and affects high frequency and satellite communication. It presents the variations of Horizontal (H) and vertical (Z) component of the geomagnetic field at some Equatorial Electrojet (EEJ) Stations during quiet days. Data from five (5) observatories along the magnetic equator were used for the study. Daily baseline values for each of the geomagnetic element 𝐻 and Z were obtained. The monthly average of the diurnal variation and the seasonal variations were found. Results showed that the variations of the geomagnetic element of both H and Z differ in magnitudes from one stations to another along the geomagnetic Equator due to the differences of their geomagnetic latitude. The Amplitude curves for Z) are seen to be conspicuously opposite to that of H), and there is absence of CEJ in Z- Component but present in H- Components. The  values during the pre-sunrise hours are low compare to daytime hours. Minimum variations of dH was observed during June solstice and maximum variations was observed during Equinox season. This study shows that daily variations of (H) and (Z) occur in all the stations. The enhancement in H is as a result of EEJ current.


2021 ◽  
Vol 5 (2) ◽  
pp. 531-548
Author(s):  
Aniefiok F. Akpaneno ◽  
O. N. Abdullahi

This research is monitoring equatorial geomagnetic current which causes atmospheric instabilities and affects high frequency and satellite communication. It presents the variations of Horizontal (H) and vertical (Z) component of the geomagnetic field at some Equatorial Electrojet (EEJ) Stations during quiet days. Data from five (5) observatories along the magnetic equator were used for the study. Daily baseline values for each of the geomagnetic element 𝐻 and Z were obtained. The monthly average of the diurnal variation and the seasonal variations were found. Results showed that the variations of the geomagnetic element of both H and Z differ in magnitudes from one stations to another along the geomagnetic Equator due to the differences of their geomagnetic latitude. The Amplitude curves for Z) are seen to be conspicuously opposite to that of H), and there is absence of CEJ in Z- Component but present in H- Components. The  values during the pre-sunrise hours are low compare to daytime hours. Minimum variations of dH was observed during June solstice and maximum variations was observed during Equinox season. This study shows that daily variations of (H) and (Z) occur in all the stations. The enhancement in H is as a result of EEJ current


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. J43-J55 ◽  
Author(s):  
Huixiang Zhen ◽  
Yuanyuan Li ◽  
Yushan Yang

The total-field magnetic anomaly [Formula: see text] is approximated as the component [Formula: see text] of the anomalous vector [Formula: see text] along the direction of the normal geomagnetic field. It is widely used in magnetic data processing and interpretation practices as a routine if [Formula: see text] is relatively small. But in highly magnetic environments, the distinction between [Formula: see text] and [Formula: see text] is often too large to be ignored. We carefully investigate the difference between [Formula: see text] and [Formula: see text] and find that it will increase rapidly in the trend of the quadratic function as [Formula: see text] strengthens. We also test the effects of approximation on the component transformation and reduction to the pole on a synthetic single-sphere model. As expected, the error caused by inaccurate information will propagate into subsequent data processing procedures and adversely affect the results. Therefore, we have developed an optimization strategy based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm to transform the total-field anomaly into [Formula: see text]. First, we have constructed an objective function after transforming [Formula: see text] into [Formula: see text] through the component transformation in the frequency domain. Then, using [Formula: see text] as the initial value of [Formula: see text], [Formula: see text] is calculated iteratively by the L-BFGS algorithm. To test the validity of the optimization algorithm, [Formula: see text] is transformed for noise-free and noise-corrupted models and models with a background field. The synthetics indicate that the transformed [Formula: see text] is almost the same as the model [Formula: see text], whose maximum error is approximately one-hundredth (30 nT) of the difference (8000 nT) between the modeled [Formula: see text] and [Formula: see text]. The synthetics and field data example from the Yangshan Iron Mine, Fujian Province, southern China, also indicate that the data transformation and forward-modeling results can benefit from the direct use of transformed [Formula: see text] instead of [Formula: see text].


2021 ◽  
pp. 153857442110232
Author(s):  
Spyridon N. Mylonas ◽  
Konstantinos G. Moulakakis ◽  
Nikolaos Kadoglou ◽  
Constantinos Antonopoulos ◽  
Thomas E. Kotsis ◽  
...  

Purpose: The aim of the present study was to investigate a potential difference on the arterial stiffness among aneurysm patients and non-aneurysm controls, as well as to explore potential changes between patients treated either with endovascular or open repair. Materials and Methods: A 110 patients with an infrarenal AAA were prospectively enrolled in this study. Fifty-six patients received an EVAR, whereas 54 patients received an open surgical repair. Moreover, 103 gender and age-matched subjects without AAA served as controls. The cardio-ankle vascular index (CAVI) was applied for measurement of the arterial stiffness. Results: CAVI values were statistically higher in the AAA patients when compared with control subjects. Although at 48 hours postoperatively the CAVI values were increased in both groups when compared to baseline values, the difference in CAVI had a tendency to be higher in the open group compared to the endovascular group. At 6 months of follow up the CAVI values returned to the baseline for the patients of the open repair group. However, in the endovascular group CAVI values remained higher when compared with the baseline values. Conclusion: Patients with AAAs demonstrated a higher value of CAVI compared to healthy controls. A significant increase of arterial stiffness in both groups during the immediate postoperative period was documented. The increase in arterial stiffness remained significant at 6 months in EVAR patients. Further studies are needed to elucidate the impact of a decreased aortic compliance after stentgraft implantation on the cardiac function of patients with AAA.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Nils Olsen

AbstractThis paper describes and discusses the preprocessing and calibration of the magnetic data taken by the navigational magnetometers onboard the two GRACE satellites, with focus on the almost 10 years period from January 2008 to the end of the GRACE mission in October 2017 for which 1-Hz magnetic data are available. A calibration of the magnetic data is performed by comparing the raw magnetometer sensor readings with model magnetic vector values as provided by the CHAOS-7 geomagnetic field model for the time and position of the GRACE data. The presented approach also accounts for magnetic disturbances produced by the satellite’s magnetorquer and for temperature effects, which are parametrized by the Sun incident angle. The root-mean-squared error of the difference between the calibrated data and CHAOS-7 model values is about 10 nT, which makes the GRACE magnetometer data relevant for geophysical investigations.


1945 ◽  
Vol 18 (1) ◽  
pp. 8-9 ◽  
Author(s):  
Eugénie Cotton-Feytis

Abstract From the standpoint of its magnetic anisotropy, stretched rubber is comparable in a first approximation to a uniaxial crystal, in which the direction of the axis is the same as the direction of elongation. It is possible to measure this anisotropy by means of the oscillation method used by Krishnan, Guha and Banerjee in studying crystals. The sample to be examined is suspended in a uniform horizontal magnetic field in such a manner that its axis is horizontal. It is then so arranged that the torsion of the suspension wire is zero when the rubber sample is in a position of equilibrium in the field. The times of oscillation T′ and T for very small angular displacements around this position, in the presence and then in the absence of the magnetic field, are then recorded. In this way the difference between the specific susceptibilities in the direction of the axis and in the horizontal direction perpendicular to the axis is calculated by application of the equation:


1987 ◽  
Vol 24 (12) ◽  
pp. 2392-2395 ◽  
Author(s):  
M. J. Aitken ◽  
A. L. Allsop ◽  
G. D. Bussell ◽  
M. Winter

Evaluation of the ancient geomagnetic field at the time that this kiln last cooled down, around A.D. 1840, has been made by means of the Thellier technique applied to bricks from the floor. The value obtained, 56 ± 1 μT, is significantly lower than the value expected from contemporary observatory measurements, 64 μT. The difference is consistent with the demagnetizing field expected from the rather strong magnetization of the baked clay.


2003 ◽  
Vol 21 (3) ◽  
pp. 661-669 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley

Abstract. We examine the residual (measured minus internal) magnetic field vectors observed in Saturn’s magnetosphere during the Pioneer-11 fly-by in 1979, and compare them with those observed during the Voyager-1 and -2 fly-bys in 1980 and 1981. We show for the first time that a ring current system was present within the magnetosphere during the Pioneer-11 encounter, which was qualitatively similar to those present during the Voyager fly-bys. The analysis also shows, however, that the ring current was located closer to the planet during the Pioneer-11 encounter than during the comparable Voyager-1 fly-by, reflecting the more com-pressed nature of the magnetosphere at the time. The residual field vectors have been fit using an adaptation of the current system proposed for Jupiter by Connerney et al. (1981a). A model that provides a reasonably good fit to the Pioneer-11 Saturn data extends radially between 6.5 and 12.5 RS (compared with a noon-sector magnetopause distance of 17 RS), has a north-south extent of 4 RS, and carries a total current of 9.6 MA. A corresponding model that provides a qualitatively similar fit to the Voyager data, determined previously by Connerney et al. (1983), extends radially between 8 and 15.5 RS (compared with a noon-sector magnetopause distance for Voyager-1 of 23–24 RS), has a north-south extent of 6 RS, and carries a total current of 11.5 MA.Key words. Magnetospheric physics (current systems, magnetospheric configuration and dynamics, planetary magnetospheres)


2013 ◽  
Vol 7 (1) ◽  
pp. 29-36 ◽  
Author(s):  
R.G. Rastogi ◽  
H. Chandra ◽  
Rahul Shah ◽  
N.B. Trivedi ◽  
S.L. Fontes

The paper describes the characteristics of the equatorial electrojet at Huancayo (HUA, 12.1oS, 75.3oW, inclination 1.5oN, declination 1.0oE) in western side of South America, where the geomagnetic field is aligned almost along the geographic meridian, and at Itinga (ITI, 4.3oS, 47.oW, inclination 1.4oN, declination 19.3oW) in eastern part of South America, where the geomagnetic field is aligned about 19o west of the geographic meridian; although the mean intensity of the magnetic field in the two regions are almost of the same order. Further comparisons are made of the current at Itinga and at Tatuoca (TTB, 1.2oS, 48.5oW, inclination 7.8o N, declination 18.7oW), a low latitude station in the same longitude sector. The daily range of horizontal component of the geomagnetic field, H, is shown to be almost 16% higher at HUA compared to that at ITI. The daily variation of the eastward field, Y, showed a strong minimum of -40 nT around 13-14 hr LT at ITI whereas very low values were observed at HUA with a positive peak of about 4 nT around 11- 12 hr LT. The vertical field, Z, showed abnormally large negative values of -70 nT at TTB around 13 hr LT. The day-today fluctuations of midday and midnight values of X field were positively correlated between HUA and ITI with a high correlation coefficient of 0.78 and 0.88 respectively. Values of Y field were also significantly positively correlated between HUA and ITI for midnight hours (0.72), while no correlation was observed for the midday hours. The midnight values of X field at HUA, ITI and TTB showed significant (0.90 or greater) correlation with Dst index. Correlation values of about 0.7 were observed between Dst and midday values of X at ITI and TTB and to a lesser degree (0.4) at HUA.


Sign in / Sign up

Export Citation Format

Share Document