Reflection technique in time‐frequency domain using multicomponent acoustic emission signals and application to geothermal reservoirs

Geophysics ◽  
2002 ◽  
Vol 67 (3) ◽  
pp. 928-938 ◽  
Author(s):  
Nobukazu Soma ◽  
Hiroaki Niitsuma ◽  
Roy Baria

We have developed a reflection technique for estimating deep geothermal reservoir structures using acoustic emission signals as a source, which is useful when there is no proper estimating technique because of high temperature, high pressure, and great depth. Because its resolution is not high enough for comparison with methods such as well logging, we have enhanced the technique by developing a time–frequency‐domain analysis of multicomponent acoustic emission signals using a wavelet transform. The reflected wave is separated from an incoherent coda by analyzing the shape of a 3‐D hodogram: a linear shape indicates the arrival of a coherent signal such as a reflected wave, and an incoherent signal such as a coda makes a spherical shape. We construct a spectral matrix of 3‐D particle motion using a wavelet transform, as is done in a time–frequency domain. We evaluate the linearity of the 3‐D hodogram for each time and frequency by using the eigenvalues of the spectral matrix. Three‐dimensional inversion of the distribution of hodogram linearity in the time–frequency domain lets us image the deep subsurface structure. The inversion is based on the diffraction stack. We reduce the uncertainties by investigating S‐wave polarization direction, and we compensate for inhomogeneous source distribution to get reliable estimates with high resolution. We then evaluate our methods with synthetic signals. We discriminate a coherent wave from incoherent random noise in the presence of an S/N ratio of −3.7 dB and detect reflectors at correct depths with a small number of detectors. We apply the method to data from the European hot, dry rock site in Soultz‐sous‐Forêts, France, and compare our estimates with those from a number of borehole observations. The detected reflectors agree with the location of fracture zones. We demonstrate the feasibility of the method for detecting reflectors at great depths.

2021 ◽  
pp. 1-81
Author(s):  
Xiaokai Wang ◽  
Zhizhou Huo ◽  
Dawei Liu ◽  
Weiwei Xu ◽  
Wenchao Chen

Common-reflection-point (CRP) gather is one extensive-used prestack seismic data type. However, CRP suffers more noise than poststack seismic dataset. The events in the CRP gather are always flat, and the effective signals from neighboring traces in the CRP gather have similar forms not only in the time domain but also in the time-frequency domain. Therefore, we firstly use the synchrosqueezing wavelet transform (SSWT) to decompose seismic traces to the time-frequency domain, as the SSWT has better time-frequency resolution and reconstruction properties. Then we propose to use the similarity of neighboring traces to smooth and threshold the SSWT coefficients in the time-frequency domain. Finally, we used the modified SSWT coefficients to reconstruct the denoised traces for the CRP gather. Synthetic and field data examples show that our proposed method can effectively attenuate random noise with a better attenuation performance than the commonly-used principal component analysis, FX filter, and the continuous wavelet transform method.


2015 ◽  
Vol 9 (1) ◽  
pp. 214-219 ◽  
Author(s):  
Su Hua ◽  
Chang Cheng

This paper performed a radial compression fatigue test on glass fiber winding composite tubes, collected acoustic emission signals at different fatigue damages stages, used time frequency analysis techniques for modern wavelet transform, and analyzed the wave form and frequency characteristics of fatigue damaged acoustic emission signals. Three main frequency bands of acoustic emission signal had been identified: 80-160 kHz (low frequency band), 160-300 kHz (middle frequency band), and over 300kHz (high frequency band), corresponding to the three basic damage modes: the fragmentation of matrix resin, the layered damage of fiber and matrix, and the fracture of cellosilk respectively. The usage of wavelet transform enabled the separation of fatigue damaged acoustic emission signals from interference wave, and the access to characteristics of high signal-noise-ratio fatigue damage.


2021 ◽  
Vol 11 (17) ◽  
pp. 8236
Author(s):  
Le Zhang ◽  
Hongguang Ji ◽  
Liyuan Liu ◽  
Jiwei Zhao

To study the crack evolution law and failure precursory characteristics of deep granite rocks in the process of deformation and failure under high confining pressure, granite samples obtained from a depth of 1150 m are tested using a TAW-2000 triaxial hydraulic servo testing machine and a PCI-II acoustic emission monitoring system. Based on the stress–strain curve and IET function, the loading process of the sample is divided into five stages: crack closure, linear elastic deformation, microcrack generation and development, macroscopic fracture generation and energy surge, and post-peak failure. The evolution trend and fracture evolution law of the acoustic emission signal event interval function in different stages are analyzed. In particular, the signals with an amplitude greater than 85 dB, a peak frequency greater than 350 kHz, and a frequency centroid greater than 275 kHz are defined as the failure precursor signals before the rock reaches the peak stress. The defined precursor signal conditions agree well with the experimental results. The time–frequency analysis and wavelet packet decomposition of the precursor signal are performed on the extracted characteristic signal of the failure precursor. The results show that the time-domain signal is in the form of a continuous waveform, and the frequency-domain waveform has multi-peak coexistence that is mainly concentrated in the high-frequency region. The energy distribution obtained by the wavelet packet decomposition of the characteristic signal is verified with the frequency-domain waveform. The energy distribution of the signal is mainly concentrated in the 343.75–375 kHz frequency band, followed by the 281.25–312.5 kHz frequency band. The energy proportion of the high-frequency signal increases with the confining pressure.


2011 ◽  
Vol 141 ◽  
pp. 574-577
Author(s):  
Lu Zhang ◽  
Guo Feng Wang ◽  
Xu Da Qin ◽  
Xiao Liang Feng

Tool wear monitoring plays an important role in the automatic machining processes. Therefore, it is necessary to establish a reliable method to predict tool wear status. In this paper, features of acoustic emission (AE) extracted from time-frequency domain are integrated with force features to indicate the status of tool wear. Meanwhile, a support vector machine (SVM) model is employed to distinguish the tool wear status. The result of the classification of different tool wear status proved that features extracted from time-frequency domain can be the recognize-features of high recognition precision.


2017 ◽  
Vol 17 (6) ◽  
pp. 1410-1424 ◽  
Author(s):  
Dan Li ◽  
Kevin Sze Chiang Kuang ◽  
Chan Ghee Koh

This article focuses on the rail crack monitoring using acoustic emission technique in the field typically with complex cracking conditions and high operational noise. A novel crack monitoring strategy based on Tsallis synchrosqueezed wavelet entropy was developed, where synchrosqueezed wavelet transform was introduced to explore the time–frequency characteristics of acoustic emission signals and Tsallis entropy was adopted to quantify the local variation of acoustic emission wavelet coefficients more accurately. The mother wavelet of synchrosqueezed wavelet transform and three key parameters of time-Tsallis synchrosqueezed wavelet entropy, including characteristic frequency band, non-extensive parameter, and time window length, were appropriately determined. The performance of the strategy was validated through field tests with an incipient rail crack and trains running at operating speeds. Time-Tsallis synchrosqueezed wavelet entropy efficiently detected and located the crack by extracting the crack-related transients in acoustic emission signals that were easily submerged in the operational noise. Synchrosqueezed wavelet transform further helped to analyze the mechanisms of these crack-related transients, which were distinguished to be either crack propagation or impact. The experimental results demonstrated that the crack monitoring strategy proposed is able to detect both surface and internal rail cracks even in the noisy environment, highlighting its potential for field applications.


Sign in / Sign up

Export Citation Format

Share Document