Magnetic data processing for hydrocarbon exploration in the Pannonian Basin, Yugoslavia

Geophysics ◽  
2001 ◽  
Vol 66 (6) ◽  
pp. 1669-1679 ◽  
Author(s):  
Milenko Burazer ◽  
Milinko Grbović ◽  
Vicko Žitko

Because magnetic minerals may directly indicate the presence of oil and gas deposits, magnetic methods are applied to hydrocarbon exploration in oil‐bearing sedimentary basins. The basic problem in applying these methods is the isolation of weak magnetic anomalies sourced by low concentrations of the magnetic minerals present. These weak anomalies are often masked by much stronger magnetic anomalies caused by underlying magnetic rocks and/or by rocks in the basin sediments. Weak local anomalies can efficiently be isolated by applying selective 1‐D digital frequency filters. The method of filtering has been checked by data obtained using simple models of magnetic sources and using a model representative of the local geology in our study area in the southern Pannonian basin, Yugoslavia, The magnetic field frequency content was analyzed by applying the power spectral density estimation, using the maximum entropy method. The digital filters were designed using the window function method. The best results were obtained by the Kaiser window function for the chosen range of the band‐pass filter. In our study area, me isolated local magnetic anomalies have amplitudes of ±10 nT and trend in an east‐west direction parallel to the predominant structural grain. These anomalies correlate very well with the known oil and gas fields. As an example, filter processing of magnetic anomaly data, combined with the 3‐D seismic data gained in the filtered magnetic field, correlate well with one of the oil fields. The next phase of the project will concentrate on the anomalies occurring outside the established gas and oil fields.

Geophysics ◽  
1984 ◽  
Vol 49 (9) ◽  
pp. 1549-1553 ◽  
Author(s):  
J. O. Barongo

The concept of point‐pole and point‐dipole in interpretation of magnetic data is often employed in the analysis of magnetic anomalies (or their derivatives) caused by geologic bodies whose geometric shapes approach those of (1) narrow prisms of infinite depth extent aligned, more or less, in the direction of the inducing earth’s magnetic field, and (2) spheres, respectively. The two geologic bodies are assumed to be magnetically polarized in the direction of the Earth’s total magnetic field vector (Figure 1). One problem that perhaps is not realized when interpretations are carried out on such anomalies, especially in regions of high magnetic latitudes (45–90 degrees), is that of being unable to differentiate an anomaly due to a point‐pole from that due to a point‐dipole source. The two anomalies look more or less alike at those latitudes (Figure 2). Hood (1971) presented a graphical procedure of determining depth to the top/center of the point pole/dipole in which he assumed prior knowledge of the anomaly type. While it is essential and mandatory to make an assumption such as this, it is very important to go a step further and carry out a test on the anomaly to check whether the assumption made is correct. The procedure to do this is the main subject of this note. I start off by first using some method that does not involve Euler’s differential equation to determine depth to the top/center of the suspected causative body. Then I employ the determined depth to identify the causative body from the graphical diagram of Hood (1971, Figure 26).


1999 ◽  
Vol 39 (1) ◽  
pp. 12 ◽  
Author(s):  
M.T. Bradshaw C.B. Foster ◽  
M.E. Fellows ◽  
D.C. Rowland

Three cycles of successful commercial hydrocarbon exploration and discovery have occurred in Australia since 1960, although sporadic efforts to locate oil accumulations have occurred since 1860. The first cycle of successful exploration, from 1960 to 1972, revealed most of the productive basins and all of the giant oil fields found to date. After an interval of very low drilling rates between 1973 and 1978, exploration activity returned to strong levels for a second cycle of discovery between 1978 and 1988. A third cycle commenced in 1989 when there was an increase in exploration activity and the number of hydrocarbon discoveries again, after a low point in the mid 1980s.The discovery of oil and gas fields is dependent on the rate of exploration activity, geological endowment, exploration efficiency and chance. Technology and geological knowledge influence exploration efficiency. The main driver of exploration activity is the profit motive, which is modified by government policies, oil price, markets, and perceived prospectivity. Discovery itself is a powerful stimulus to further exploration. Through the last 40 years these factors have varied in their impact on exploration and the resulting petroleum discoveries.


2020 ◽  
Author(s):  
Rick Saltus ◽  
Aaron Canciani ◽  
Brian Meyer ◽  
Arnaud Chulliat

<p>We usually think of crustal magnetic anomalies as static (barring some major seismic or thermal disruption).  But a significant portion of the crustal magnetic field is caused by the interaction of magnetic minerals with the Earth’s magnetic field.  This induced magnetic effect is dependent on the direction and magnitude of the ambient field.  So, of course, as the Earth’s magnetic field changes over time, the form and magnitude of induced magnetic anomalies will vary as well.  These changes will often be negligible for interpretation when compared with measurement and other interpretational uncertainties.  However, with the reduction of various sources of measurement noise and increased fidelity of interpretation, these temporal anomaly changes may need to be considered.</p><p>In addition to considerations relating to interpretation uncertainty, these temporal anomaly changes, if they are measured in multiple magnetic epochs, can theoretically provide valuable information for use in source inversion.  For example, since crustal magnetic anomalies arise from a combination of induced (dependent the ambient field) and remanent (not dependent on ambient field) magnetic sources, measurements of secular magnetic variation can assist in separating these two sources during inversion.</p><p>We will report modeling of the expected form and magnitude of predicted induced anomaly variations, the possible implications of these variations for data compilation and interpretation, and on the availability of relevant data for measuring them.  Recent research into the use of high-resolution magnetic anomaly maps for airborne magnetic navigation has also brought the issue of changing magnetic fields into focus.  Initial work indicates that changes in induced anomalies could affect navigation accuracy in certain situations.</p>


2013 ◽  
Vol 20 (4) ◽  
pp. 501-511 ◽  
Author(s):  
G. Chen ◽  
Q. Cheng ◽  
T. Liu ◽  
Y. Yang

Abstract. The spatial structural characteristics of geological anomaly, including singularity and self-similarity, can be analysed using fractal or multifractal modelling. Here we apply the multifractal methods to potential fields to demonstrate that singularities can characterise geological bodies, including rock density and magnetic susceptibility. In addition to enhancing weak gravity and magnetic anomalies with respect to either strong or weak background levels, the local singularity index (α ≈ 2) can be used to delineate the edges of geological bodies. Two models were established to evaluate the effectiveness of mapping singularities for extracting weak anomalies and delineating edges of buried geological bodies. The Qikou depression of the Dagang oilfield in eastern China has been chosen as a study area for demonstrating the extraction of weak anomalies of volcanic rocks, using the singularity mapping technique to analyse complex magnetic anomalies caused by complex geological background. The results have shown that the singularities of magnetic data mapped in the paper are associated with buried volcanic rocks, which have been verified by both drilling and seismic survey, and the S–N and E–W faults in the region. The targets delineated for deeply seated faults and volcanic rocks in the Qikou depression should be further investigated for the potential application in undiscovered oil and gas reservoirs exploration.


2019 ◽  
Vol 8 (3) ◽  
pp. 90-93
Author(s):  
Dinni Mahmudi ◽  
Muhammad Isa ◽  
Didik Sugiyanto

Telah dilakukan penelitian geofisika menggunakan metode magnetik untuk mendapatkan struktur bawah permukaan di daerah prospek panas bumi Jaboi, Sukajaya, Kota Sabang. Pengukuran medan magnetik total dilakukan pada 40 titik menggunakan Proton Precession Magnetometer (PPM). Daerah Jaboi memiliki sudut inkinasi -4.416 dan deklinasi -0.875 dengan nilai medan magnetik total berkisar antara 41550 hingga 42600 nT. Untuk mendapatkan nilai anomali magnetik dilakukan koreksi diurnal dan koreksi IGRF (International Geomagnetic Reference Field). Setelah koreksi dilakukan diperoleh nilai anomali magnetik daerah panas bumi Jaboi antara -200 nT sampai dengan -950 nT. Selanjutnya hasil anomali magnetik ini digunakan dalam memodelkan struktur bawah permukaan dengan panjang lintasan 1800 m dari Tenggara-Barat Laut. Berdasarkan interpretasi data anomali magnetik menunjukkan daerah penelitian didominasi oleh anomali rendah yang berarti daerah manifestasi panas bumi. Interpretasi anomali tinggi dan rendah menunjukkan adanya patahan yang diduga sebagai patahan Ceuneuhot. Dari hasil pemodelan 2D menggunakan software Mag2DC, menunjukkan bahwa terdapat 5 lapisan dengan kedalaman 0 - 1000 m. Lapisan-lapisan ini adalah soil ( = 0,00 x 10-6 SI), andesit terubah (  = 13,408 x 10-6 SI), breksi tufa terubah (  = 12,686 x 10-6 SI), andesit terubah (  = 13,423 x 10-6 SI) dan breksi andesit (  = 13,535 x 10-6 SI). Melalui pemodelan ini diyakini zona patahan adalah patahan Ceuneuhot. Geophysical reasearch by using magnetic method was done in order to obtain subsurface structure of geothermal prospect area Jaboi, Sukajaya, Sabang City. The measurement of total magnetic field was taken at 40 points using Proton Precession Magnetometer (PPM). Jaboi area has an inklination angle -4.416 and declination angle -0.875 which has total magnetic field range between 41550 to 42600 nT. Diurnal Correction and IGRF (International Geomagnetic Reference Field) correction was used to obtain magnetic anomalies. The values of magnetic anomalies in Jaboi Geothermal Area is -200 to -950 nT. The result of magnetic anomalies was used to modelled the subsurface structure with profile distance is about 1800 m from Southeast to Northwest. Based on the magnetic anomalies data, the reaserch area dominated by low anomalies that indicated geothermal manifestation area. High and low magnetic anomalies indicated a fault that estimated as Ceuneuhot fault. From the result of 2D modelling using software Mag2DC, showed that the research area consist of 5 subsurface structure from 0 – 1000 m depth. The layers are soil (  = 0.00 × 10-6 SI), altered andesite (  = 13.408 × 10-6 SI), altered breccia-tuff (  = 12.686 × 10-6 SI), altered andesite (  = 13.423 × 10-6 SI), and breccia-andesite (  = 13.535 × 10-6 SI). Also from the model was  obtained the Ceuneuhot fault zone.  Keywords: Magnetik, Anomali Magnetik, Struktur Bawah Permukaan, Panas Bumi


2019 ◽  
Vol 38 (6) ◽  
pp. 447-452 ◽  
Author(s):  
Alex Nikulin ◽  
Timothy S. de Smet

Recent advances in autonomous unmanned aerial vehicle (UAV) technology, along with successful efforts to miniaturize total field magnetometers, offer a unique opportunity to test low-cost UAV-mounted systems for wide-area high-resolution magnetic surveys. Modern UAV platforms capable of flying at low altitudes and collecting dense aerial surveys, coupled with sensitive and compact instruments, allow identification of anthropogenic targets previously identifiable only in ground magnetometer surveys. We present results of a proof-of-concept study focused on developing and field testing a UAV-based magnetometer system to detect and identify abandoned and unmarked oil and gas wells in an area of historical hydrocarbon exploration and development in New York state. Our results indicate that magnetic anomalies associated with metal casing of vertical wells are pronounced considerably above background levels both at the surface and up to 50 m above-ground elevation. We determine that a detection altitude of 40 m is optimal to avoid any canopy interference while recording magnetic data at the highest signal-to-noise ratio. This methodology makes rapid detection and identification of unmarked wells possible and, in turn, allows for future sustainable development of these areas.


Author(s):  
Aleksey Schitov ◽  
Oleg Dobroserdov ◽  
Sergey Frolov ◽  
Ludmila Semenova

The paper deals with the use of the small spacecraft ECUADOR-UTE (HC1PX) designed to conduct space experiments in autonomous flight conditions and, in particular, to measure the Earth’s electromagnetic field and study the ionosphere. The spacecraft has a built-in target load module, including a precision magnetometer that measures the Earth’s magnetic field. The measurement results are used to study the properties and state of the circumterranean environment including magnetic anomalies. The latter may indicate certain tectonic structures in the sedimentary stratum, which are indicators of oil and gas, and magnetic pole displacement processes. Measurement results can also be used for prediction and forecasting efforts in anomalouszones. The compiled analytical dependences for the anomalous zones can serve as a forecasting device when studying the magnetic tension of the Earth’s geographic regions by means of a spacecraft. Measuring the magnetic anomalies of the Earth’s surface is should prove necessary forfactoring them in and developingnational industries.


Geophysics ◽  
1991 ◽  
Vol 56 (5) ◽  
pp. 598-605 ◽  
Author(s):  
H. G. Machel ◽  
E. A. Burton

(Aero‐)magnetic anomalies have been reported from several commercial hydrocarbon accumulations. However, the processes responsible for such anomalies are relatively poorly understood. This paper conceptually discusses chemical and microbiological processes involved in generating anomalous magnetization related to hydrocarbon accumulations, including hydrocarbon seepage environments. Based on thermodynamic criteria and microbiologic activity, the formation and destruction of magnetic mineral assemblages can be predicted. Under the influence of hydrocarbons, magnetite and pyrrhotite are the most important magnetic minerals formed, and the most abundant magnetic mineral destroyed is hematite. Hence, the invasion of hydrocarbons may result in “positive,” “absent,” or “negative” magnetic contrasts relative to the total magnetization prior to hydrocarbon invasion, depending upon the amounts of authigenic magnetite and pyrrhotite formed relative to the amounts of hematite destroyed. Magnetism may be generated also by natural and anthropogenic processes that have no relationships to an underlying or adjacent hydrocarbon accumulation. Consequently, anomalous magnetization, even if associated with a hydrocarbon accumulation, may or may not be genetically related to it. Magnetic mineral assemblages and the resulting magnetic contrasts, such as those predicted in this paper, have been documented from some hydrocarbon seepage environments. Hence, anomalous magnetization can be used for hydrocarbon exploration in association with other surface exploration methods.


1996 ◽  
Vol 33 (1) ◽  
pp. 12-23 ◽  
Author(s):  
Mark Pilkington ◽  
Walter R. Roest

The reliability of the long-wavelength portion (> 300 km) of the magnetic field over Canada, as represented by the national aeromagnetic anomaly database compiled by the Geological Survey of Canada (GSC), is assessed by comparison with two independent data sets: a high-altitude country-wide survey carried out by the former Earth Physics Branch (EPB) and data from the MAGSAT and POGO satellite missions. The different altitudes at which each data set was measured (300 m, ~4 km, and ~400 km), and their different resolution and time span of observations allow a determination of the integrity of selected wavelength bands in each data set. The (upward-continued) EPB and MAGSAT–POGO fields compare well for wavelengths of 300–2500 km. The GSC data show significant differences to the former, indicating that the levelling and merging of several hundred individual surveys has degraded the longer wavelength components of the magnetic field. Replacing the GSC wavelength components >300 km with those from the EPB field produces a magnetic data set containing more dependable information within the largest possible waveband.


2018 ◽  
Vol 6 (1) ◽  
pp. SB23-SB35
Author(s):  
Tibor Gúthy ◽  
Ernő Takács ◽  
Attila Csaba Kovács ◽  
Tamás Fancsik ◽  
Róbert Csabafi ◽  
...  

The first multicoverage, low-frequency deep reflection surveys in the Pannonian Basin were initiated in the late 1980s and were focused to southeast Hungary, where hydrocarbon and geothermal reserves were known. Deep seismic profiles (Pannonian Geotraverse transects) were shot according to the standards of hydrocarbon exploration data acquisition parameters to get information from the deep crust and the upper mantle. At the turn of the millennium, the international CELEBRATION 2000 deep seismic survey provided a large-scale velocity model of the Pannonian Basin and its surroundings. The substantial coverage of the collected data set enabled carrying out a detailed 3D velocity tomography study in northeast Hungary. In recent years, deep reflection data recorded in southeast Hungary became available from the oil and gas industry and several regional profiles were reprocessed and interpreted, which intersect the Pannonian Geotraverse transects. Along those lines, amplitude-preserving data processing with prestack depth migration was used to integrate new information into the existing geologic model. We aimed to evaluate recent results obtained from previous and new deep reflection data as well as from the 3D velocity tomography implemented beneath the eastern part of the Pannonian Basin. The mapped crustal scale features were incorporated into the previous geologic model. The updated model may help us to gain a better understanding of the peculiar crustal characteristics of this part of the Pannonian Basin and also provide information for hydrocarbon and geothermal potential assessments.


Sign in / Sign up

Export Citation Format

Share Document