scholarly journals Flow and swell noise in marine seismic data

Geophysics ◽  
2009 ◽  
Vol 74 (2) ◽  
pp. Q17-Q25 ◽  
Author(s):  
Thomas Elboth ◽  
Bjørn Anders Reif ◽  
Øyvind Andreassen

Various weather-related mechanisms for noise generation during marine seismic acquisition were addressed from a fluid-dynamic perspective. This was done by analyzing a number of seismic lines recorded on modern streamers during nonoptimal weather conditions. In addition, we examined some of the complex fluid-mechanics processes associated with flow that surrounds seismic streamers. The main findings were that noise in the [Formula: see text] range is mostly the result of direct hydrostatic-pressure fluctuations on the streamer caused by wave motion. For normal swell noise above [Formula: see text] and for crossflow noise, a significant portion of the observed noise probably comes from dynamic fluctuations caused by the interaction between the streamer and fluid structures in its turbulent boundary layer. This explanation differs from most previous work, which has focused on streamer oscillations, bulge waves inside old fluid-filled seismic streamers, or strumming/tugging as the main source of weather-related noise. Although modern streamers are less sensitive to such sources of noise, their ability to tackle the influence on turbulent flow noise has not improved. This implies that noise induced by turbulent flow has increased its relative impact on modern equipment. To improve the signal-to-noise ratio on seismic data, design issues related to flow noise must be addressed.

2016 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Subarsyah Subarsyah ◽  
Sahudin Sahudin

Keberadaan water-bottom multiple merupakan hal yang tidak bisa dihindari dalam akuisisi data seismik laut, tentu saja hal ini akan menurunkan tingkat perbandingan sinyal dan noise. Beberapa metode atenuasi telah dikembangkan dalam menekan noise ini. Metode atenuasi multiple diklasifikasikan dalam tiga kelompok meliputi metode dekonvolusi yang mengidentifikasi multiple berdasarkan periodisitasnya, metode filtering yang memisahkan refleksi primer dan multiple dalam domain tertentu (F-K,Tau-P dan Radon domain) serta metode prediksi medan gelombang. Penerapan metode F-K demultiple yang masuk kategori kedua akan diterapkan terhadap data seismik PPPGL tahun 2010 di perairan Teluk Tomini. Atenuasi terhadap water-bottom multiple berhasil dilakukan akan tetapi pada beberapa bagian multiple masih terlihat dengan amplitude relatif lebih kecil. F-K demultiple tidak efektif dalam mereduksi multiple pada offset yang pendek dan multiple pada zona ini yang memberikan kontribusi terhadap keberadaan multiple pada penampang akhir. Kata kunci : F-K demultiple, multiple, atenuasi The presence of water-bottom multiple is unavoidable in marine seismic acquisition, of course, this will reduce signal to noise ratio. Several attenuation methods have been developed to suppress this noise. Multiple attenuation methods are classified into three groups first deconvolution method based on periodicity, second filtering method that separates the primary and multiple reflections in certain domains (FK, Tau-P and the Radon domain) ang the third method based on wavefield prediction. Application of F-K demultiple incoming second category will be applied to the seismic data in 2010 PPPGL at Tomini Gulf waters. Attenuation of the water-bottom multiple successful in reduce multiple but in some parts of seismic section multiple still visible with relatively smaller amplitude. FK demultiple not effective in reducing multiple at near offset and multiple in this zone contribute to the existence of multiple in final section. Key words : F-K demultiple, multiple, attenuation


Geophysics ◽  
1984 ◽  
Vol 49 (8) ◽  
pp. 1223-1238 ◽  
Author(s):  
John T. Kuo ◽  
Ting‐fan Dai

In taking into account both compressional (P) and shear (S) waves, more geologic information can likely be extracted from the seismic data. The presence of shear and converted shear waves in both land and marine seismic data recordings calls for the development of elastic wave‐migration methods. The migration method presently developed consists of simultaneous migration of P- and S-waves for offset seismic data based on the Kirchhoff‐Helmholtz type integrals for elastic waves. A new principle of simultaneously migrating both P- and S-waves is introduced. The present method, named the Kirchhoff elastic wave migration, has been tested using the 2-D synthetic surface data calculated from several elastic models of a dipping layer (including a horizontal layer), a composite dipping and horizontal layer, and two layers over a half‐space. The results of these tests not only assure the feasibility of this migration scheme, but also demonstrate that enhanced images in the migrated sections are well formed. Moreover, the signal‐to‐noise ratio increases in the migrated seismic section by this elastic wave migration, as compared with that using the Kirchhoff acoustic (P-) wave migration alone. This migration scheme has about the same order of sensitivity of migration velocity variations, if [Formula: see text] and [Formula: see text] vary concordantly, to the recovery of the reflector as that of the Kirchhoff acoustic (P-) wave migration. In addition, the sensitivity of image quality to the perturbation of [Formula: see text] has also been tested by varying either [Formula: see text] or [Formula: see text]. For varying [Formula: see text] (with [Formula: see text] fixed), the migrated images are virtually unaffected on the [Formula: see text] depth section while they are affected on the [Formula: see text] depth section. For varying [Formula: see text] (with [Formula: see text] fixed), the migrated images are affected on both the [Formula: see text] and [Formula: see text] depth sections.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. S83-S94 ◽  
Author(s):  
Yikang Zheng ◽  
Yibo Wang ◽  
Xu Chang

Free-surface-related multiples can provide extra illumination of the subsurface and thus can be usefully included in migration procedures. However, most multiple migration approaches require separation of primaries and free-surface-related multiples or at least prediction of multiples in advance, which is time consuming and prone to errors. The data-to-data migration (DDM) method migrates free-surface-related multiples by forward and backward propagating the recorded full data (containing primaries and free-surface-related multiples). For DDM, there is no need to predict or separate multiples, but the migration results suffer from the crosstalk generated by crosscorrelations of undesired seismic events, e.g., primaries and second-order free-surface-related multiples. We have developed least-squares DDM (LSDDM) for marine data to eliminate the crosstalk generated by DDM. In each iteration, the forward-propagated primaries and free-surface-related multiples are crosscorrelated with the backward-propagated primary and free-surface-related multiple residuals to form the reflectivity gradient. We use a three-layer model and the Marmousi model for numerical tests. The results validate that LSDDM can provide a migrated image with higher signal-to-noise ratio and more balanced amplitudes than DDM. The LSDDM approach might be valuable for general subsurface imaging for marine seismic data when the migration velocity is accurate, and the acquired data have sufficient recording time.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. R989-R1001 ◽  
Author(s):  
Oleg Ovcharenko ◽  
Vladimir Kazei ◽  
Mahesh Kalita ◽  
Daniel Peter ◽  
Tariq Alkhalifah

Low-frequency seismic data are crucial for convergence of full-waveform inversion (FWI) to reliable subsurface properties. However, it is challenging to acquire field data with an appropriate signal-to-noise ratio in the low-frequency part of the spectrum. We have extrapolated low-frequency data from the respective higher frequency components of the seismic wavefield by using deep learning. Through wavenumber analysis, we find that extrapolation per shot gather has broader applicability than per-trace extrapolation. We numerically simulate marine seismic surveys for random subsurface models and train a deep convolutional neural network to derive a mapping between high and low frequencies. The trained network is then tested on sections from the BP and SEAM Phase I benchmark models. Our results indicate that we are able to recover 0.25 Hz data from the 2 to 4.5 Hz frequencies. We also determine that the extrapolated data are accurate enough for FWI application.


Geophysics ◽  
2002 ◽  
Vol 67 (1) ◽  
pp. 188-196 ◽  
Author(s):  
Giuseppe Stanghellini ◽  
Claudia Bonazzi

The acquisition of marine seismic data is often affected by noise that introduces spurious signals. Due to the length of the receiver streamer, bad weather conditions can produce low‐frequency, high‐intensity incoherent noise and/or spikes that can be difficult to remove by means of conventional mathematical filters. In this paper we present two Fortran routines suitable to locate and remove the noise in the low and very low frequency ranges and to locate and suppress spikes. These two routines are designed to run without user interaction once the processing parameters are selected. Both routines are simple and compact, and can be included in any processing software.


Author(s):  
M. I. Aleshin ◽  
V. G. Gaynanov ◽  
M. Yu. Tokarev ◽  
A. E. Rybalko ◽  
D. A. Subetto

This article examines the results of geological interpretation of marine engineering data acquired in Onega lake. The survey included marine seismic acquisition and geological sampling. Seismo-stratigrafic units were picked according to processed seismic data. Survey results allowed to make a seismo-stratigrafic column of quaternary sediments of Onega lake. The column could be used to analyze the structure of open part of the lake as well.


2014 ◽  
Vol 989-994 ◽  
pp. 3274-3277
Author(s):  
Zhi Li Zhang ◽  
Ying Zhang ◽  
Peng Chen

For marine seismic data acquisition needs,a multichannel marine seismic data acquisition unit was designed,which used the 32-bit analog-to-digital ADS1282 as a core and Field programmable gate array (FPGA) as the acquisition controller.The unit can achieve multichannel seismic data sampling and transmission functions.The design fully used with the design ADS1282 chip integration,with the corresponding anti-jamming measures,not only simplified the circuit design,but also ensured the quality of signal acquisition and system stability.the design used FPGA to realize a multichannel hydrophone signal synchronization sampling.


Geophysics ◽  
2008 ◽  
Vol 73 (3) ◽  
pp. Q9-Q17 ◽  
Author(s):  
Martin Landrø

In marine seismic acquisition, the typical time interval between two adjacent shots is about [Formula: see text]. This interval is considered sufficient to avoid the signal from one shot interfering with the signal from the next shot. However, when we are looking for very weak signals or weak changes in a given signal (time-lapse seismic), the influence of the shot-generated noise can be of importance. In the present work, shot records with a recording time of [Formula: see text] are used to analyze the influence of the shot-generated noise from the previous shot. Simple decay models are used to match the observed rms decay curves. These calibrated models are used to estimate variations in signal-to-noise ratio versus shot time interval and source strength. For instance, if the source strength is doubled and the time interval between two shots is increased from [Formula: see text], an improvement in the signal-to-shot-generated noise from the previous shot of [Formula: see text] is expected. Especially for time-lapse seismic using permanently installed receivers, this way of increasing the S/N might be useful.


2015 ◽  
Vol 33 (3) ◽  
pp. 403
Author(s):  
Lourenildo W.B. Leite ◽  
J. Mann ◽  
Wildney W.S. Vieira

ABSTRACT. The present study results from a consistent processing and imaging of marine seismic data from a set collected over sedimentary basins of the East Brazilian Atlantic. Our general aim is first to subsidize geological interpretations with plausible subsurface images for oil and gas exploration. In second place, to verify published schematic geological interpretation for these basins by underlying the sediment/basement contact, from where subvertical faults are projected upwards through the basin followed by folded structures. The data-driven results can be used to trace the reflector boundaries in the time sections, submitted to time-to-depth axis transformation, and to be used as a first model for further basin pressure prediction, where natural pumps necessarily develop for the mechanism of oil and gas accumulation. The applied fundamental techniques are mainly based on the data-driven common reflection surface stack, where it is shown the improvement of the signal-to-noise ratio, the lateral continuity of the reflection events, the resolution, and that time migration collapses the diffraction events. The CRS migration strongly collapsed the diffraction events, allowing some subsurface structures be more evident. The free surface and some shallow internal multiples can be clearly traced for further processing aiming at their attenuation. The interpretation lines are meant to show the geometry of selected reflectors, and to help comparing the results with other similar sections. One can trace some subvertical fault systems starting from the lower part of the section (interpreted as the basement), and their extension upwards through the sedimentary sequence.Keywords: CRS stack, CRS migration, residual static correction, NIP wave tomography. RESUMO. O presente artigo resulta de um processamento e imageamento consistentes de dados sísmicos marinhos de levantamento realizado em bacias sedimentares do Atlântico do Nordeste brasileiro. Nossos objetivos gerais são em primeiro lugar subsidiar as interpretações geológicas com imagens plausíveis do subsolo, e voltadas à exploração de óleo e gás. Em segundo lugar, verificar as interpretações geológicas esquemáticas publicadas para estas bacias, para conferir o delineamento do contato sedimento/embasamento, de onde falhas subvertical são projetadas através da bacia, seguidas de estruturas dobradas. Os resultados baseados em dados reais podem ser usados para delinear interfaces refletoras contidas nas seções tempo, submetidos à transformação da coordenada tempo para profundidade, e que podem ser usados posteriormente como um primeiro modelo para a predição de pressão em bacias sedimentares, onde se desenvolve um bombeamento natural necessário para a acumulação de óleo e gás. As técnicas fundamentais aplicadas baseiam-se principalmente no denominado empilhamento de superfície de reflexão comum, baseado em dados observados, onde se mostra a evolução da relação sinal-ruído, da continuidade lateral dos eventos de reflexão, da resolução, e o colapso dos eventos de difração nas seções de migração do tempo. A migração CRS colapsa fortemente os eventos de difração permitindo que algumas estruturas do subsolo sejam mais evidentes. Múltiplas da superfície livre, e algumas internas rasas, podem ser claramente traçadas para processamento adicional que visam a atenuação. As linhas de interpretação trac¸adas visam mostrar a geometria dos refletores selecionados, e ajudar na comparação com outros resultados de seções semelhantes. Pode-se traçar um sistema de falhas subvertical a partir da base inferior (interpretada como o embasamento) da seção escolhida como referência, e os seus prolongamentos através da sequência sedimentar.Palavras-chave: empilhamento CRS, migração CRS, correção estática residual, tomografia NIP.


Sign in / Sign up

Export Citation Format

Share Document