scholarly journals Ground-penetrating-radar reflection attenuation tomography with an adaptive mesh

Geophysics ◽  
2010 ◽  
Vol 75 (4) ◽  
pp. WA251-WA261 ◽  
Author(s):  
Emily A. Hinz ◽  
John H. Bradford

Ground-penetrating radar (GPR) attenuation-difference analysis can be a useful tool for studying fluid transport in the subsurface. Surface-based reflection attenuation-difference tomography poses a number of challenges that are not faced by crosshole attenuation surveys. We create and analyze a synthetic attenuation-difference GPR data set to determine methods for processing amplitude changes and inverting for conductivity differences from reflection data sets. Instead of using a traditional grid-based inversion, we use a data-driven adaptive-meshing algorithm to alter the model space and to create a more even distribution of resolution. Adaptive meshing provides a method for improving the resolution of the model space while honoring the data limitations and improving the quality of the attenuation difference inversion. Comparing inversions on a conventional rectangular grid with the adaptive mesh, we find that the adaptively meshed model reduces the inversion computation time by an average of 75% with an improvement in the root mean square error of up to 15%. While the sign of the conductivity change is correctly reproduced by the inversion algorithm, the magnitude varies by as much as much as 50% from the true values. Our heterogeneous conductivity model indicates that the attenuation difference inversion algorithm effectively locates conductivity changes, and that surface-based reflection surveys can produce models as accurate as traditional crosshole surveys.

2019 ◽  
Vol 11 (4) ◽  
pp. 405
Author(s):  
Xuan Feng ◽  
Haoqiu Zhou ◽  
Cai Liu ◽  
Yan Zhang ◽  
Wenjing Liang ◽  
...  

The subsurface target classification of ground penetrating radar (GPR) is a popular topic in the field of geophysics. Among the existing classification methods, geometrical features and polarimetric attributes of targets are primarily used. As polarimetric attributes contain more information of targets, polarimetric decomposition methods, such as H-Alpha decomposition, have been developed for target classification of GPR in recent years. However, the classification template used in H-Alpha classification is preset depending on the experience of synthetic aperture radar (SAR); therefore, it may not be suitable for GPR. Moreover, many existing classification methods require excessive human operation, particularly when outliers exist in the sample (the data set containing the features of targets); therefore, they are not efficient or intelligent. We herein propose a new machine learning method based on sample centers, i.e., particle center supported plane (PCSP). The sample center is defined as the point with the smallest sum of distances from all points in the same sample, which is considered as a better representation of the sample without significant effect of the outliers. In this proposed method, particle swarm optimization (PSO) is performed to obtain the sample centers; the new criterion for subsurface target classification is achieved. We applied this algorithm to full polarimetric GPR data measured in the laboratory and outdoors. The results indicate that, comparing with support vector machine (SVM) and classical H-Alpha classification, this new method is more efficient and the accuracy is relatively high.


Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. WA119-WA129 ◽  
Author(s):  
Anja Rutishauser ◽  
Hansruedi Maurer ◽  
Andreas Bauder

On the basis of a large data set, comprising approximately 1200 km of profile lines acquired with different helicopter-borne ground-penetrating radar (GPR) systems over temperate glaciers in the western Swiss Alps, we have analyzed the possibilities and limitations of using helicopter-borne GPR surveying to map the ice-bedrock interface. We have considered data from three different acquisition systems including (1) a low-frequency pulsed system hanging below the helicopter (BGR), (2) a stepped frequency system hanging below the helicopter (Radar Systemtechnik GmbH [RST]), and (3) a commercial system mounted directly on the helicopter skids (Geophysical Survey Systems Incorporated [GSSI]). The systems showed considerable differences in their performance. The best results were achieved with the BGR system. On average, the RST and GSSI systems yielded comparable results, but we observed significant site-specific differences. A comparison with ground-based GPR data found that the quality of helicopter-borne data is inferior, but the compelling advantages of airborne surveying still make helicopter-borne data acquisition an attractive option. Statistical analyses concerning the bedrock detectability revealed not only large differences between the different acquisition systems but also between different regions within our investigation area. The percentage of bedrock reflections identified (with respect to the overall profile length within a particular region) varied from 11.7% to 68.9%. Obvious factors for missing the bedrock reflections included large bedrock depths and steeply dipping bedrock interfaces, but we also observed that internal features within the ice body may obscure bedrock reflections. In particular, we identified a conspicuous “internal reflection band” in many profiles acquired with the GSSI system. We attribute this feature to abrupt changes of the water content within the ice, but more research is required for a better understanding of the nature of this internal reflection band.


Geophysics ◽  
2009 ◽  
Vol 74 (1) ◽  
pp. J1-J12 ◽  
Author(s):  
Jacques Deparis ◽  
Stéphane Garambois

The presence of a thin layer embedded in any formation creates complex reflection patterns caused by interferences within the thin bed. The generated reflectivity amplitude variations with offset have been increasingly used in seismic interpretation and more recently tested on ground-penetrating radar (GPR) data to characterize nonaqueous-phase liquid contaminants. Phase and frequency sensitivities of the reflected signals are generally not used, although they contain useful information. The present study aims to evaluate the potential of these combined properties to characterize a thin bed using GPR data acquired along a common-midpoint (CMP) survey, carried out to assess velocity variations in the ground. It has been restricted to the simple case of a thin bed embedded within a homogeneous formation, a situation often encountered in fractured media. Dispersive properties ofthe dielectric permittivity of investigated materials (homogeneous formation, thin bed) are described using a Jonscher parameterization, which permitted study of the dependency of amplitude and phase variation with offset (APVO) curves on frequency and thin-bed properties (filling nature, aperture). In the second part, we discuss and illustrate the validity of the thin-bed approximation as well as simplify assumptions and make necessary careful corrections to convert raw CMP data into dispersive APVO curves. Two different strategies are discussed to correct the data from propagation effects: a classical normal-moveout approach and an inverse method. Finally, the proposed methodology is applied to a CMP GPR data set acquired along a vertical cliff. It allowed us to extract the characteristics of a subvertical fracture with satisfying resolution and confidence. The study motivates interest to use dispersion dependency of the reflection coefficient variations for thin-bed characterization.


Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. H13-H22 ◽  
Author(s):  
Saulo S. Martins ◽  
Jandyr M. Travassos

Most of the data acquisition in ground-penetrating radar is done along fixed-offset profiles, in which velocity is known only at isolated points in the survey area, at the locations of variable offset gathers such as a common midpoint. We have constructed sparse, heavily aliased, variable offset gathers from several fixed-offset, collinear, profiles. We interpolated those gathers to produce properly sampled counterparts, thus pushing data beyond aliasing. The interpolation methodology estimated nonstationary, adaptive, filter coefficients at all trace locations, including at the missing traces’ corresponding positions, filled with zeroed traces. This is followed by an inversion problem that uses the previously estimated filter coefficients to insert the new, interpolated, traces between the original ones. We extended this two-step strategy to data interpolation by employing a device in which we used filter coefficients from a denser variable offset gather to interpolate the missing traces on a few independently constructed gathers. We applied the methodology on synthetic and real data sets, the latter acquired in the interior of the Antarctic continent. The variable-offset interpolated data opened the door to prestack processing, making feasible the production of a prestack time migrated section and a 2D velocity model for the entire profile. Notwithstanding, we have used a data set obtained in Antarctica; there is no reason the same methodology could not be used somewhere else.


Geophysics ◽  
2008 ◽  
Vol 73 (4) ◽  
pp. J15-J23 ◽  
Author(s):  
Holger Gerhards ◽  
Ute Wollschläger ◽  
Qihao Yu ◽  
Philip Schiwek ◽  
Xicai Pan ◽  
...  

Ground-penetrating radar is a fast noninvasive technique that can monitor subsurface structure and water-content distribution. To interpret traveltime information from single common-offset measurements, additional assumptions, such as constant permittivity, usually are required. We present a fast ground-penetrating-radar measurement technique using a multiple transmitter-and-receiver setup to measure simultaneously the reflector depth and average soil-water content. It can be considered a moving minicommon-midpoint measurement. For a simple analysis, we use a straightforward evaluation procedure that includes two traveltimes to the same reflector, obtained from different antenna separations. For a more accurate approach, an inverse evaluation procedure is added, using traveltimes obtained from all antenna separations at one position and its neighboring measurement locations. The evaluation of a synthetic data set with a lateral variability in reflector depth and an experimental example with a large variability in soil-water content are introduced to demonstrate the applicability for field-scale measurements. The crucial point for this application is the access to absolute traveltimes, which are difficult to determine accurately from common-offset measurements.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Dragan Poljak ◽  
Silvestar Šesnić ◽  
Mario Cvetković ◽  
Anna Šušnjara ◽  
Hrvoje Dodig ◽  
...  

The paper reviews the application of deterministic-stochastic models in some areas of computational electromagnetics. Namely, in certain problems there is an uncertainty in the input data set as some properties of a system are partly or entirely unknown. Thus, a simple stochastic collocation (SC) method is used to determine relevant statistics about given responses. The SC approach also provides the assessment of related confidence intervals in the set of calculated numerical results. The expansion of statistical output in terms of mean and variance over a polynomial basis, via SC method, is shown to be robust and efficient approach providing a satisfactory convergence rate. This review paper provides certain computational examples from the previous work by the authors illustrating successful application of SC technique in the areas of ground penetrating radar (GPR), human exposure to electromagnetic fields, and buried lines and grounding systems.


2021 ◽  
Vol 11 (19) ◽  
pp. 8820
Author(s):  
Tim Klewe ◽  
Christoph Strangfeld ◽  
Tobias Ritzer ◽  
Sabine Kruschwitz

To date, the destructive extraction and analysis of drilling cores is the main possibility to obtain depth information about damaging water ingress in building floors. The time- and cost-intensive procedure constitutes an additional burden for building insurances that already list piped water damage as their largest item. With its high sensitivity for water, a ground-penetrating radar (GPR) could provide important support to approach this problem in a non-destructive way. In this research, we study the influence of moisture damage on GPR signals at different floor constructions. For this purpose, a modular specimen with interchangeable layers is developed to vary the screed and insulation material, as well as the respective layer thickness. The obtained data set is then used to investigate suitable signal features to classify three scenarios: dry, damaged insulation, and damaged screed. It was found that analyzing statistical distributions of A-scan features inside one B-scan allows for accurate classification on unknown floor constructions. Combining the features with multivariate data analysis and machine learning was the key to achieve satisfying results. The developed method provides a basis for upcoming validations on real damage cases.


Geophysics ◽  
2007 ◽  
Vol 72 (4) ◽  
pp. R67-R75 ◽  
Author(s):  
Jonathan B. Ajo-Franklin ◽  
Burke J. Minsley ◽  
Thomas M. Daley

Tomographic imaging problems are typically ill-posed and often require the use of regularization techniques to guarantee a stable solution. Minimization of a weighted norm of model length is one commonly used secondary constraint. Tikhonov methods exploit low-order differential operators to select for solutions that are small, flat, or smooth in one or more dimensions. This class of regularizing functionals may not always be appropriate, particularly in cases where the anomaly being imaged is generated by a nonsmooth spatial process. Time-lapse imaging of flow-induced velocity anomalies is one such case; flow features are often characterized by spatial compactness or connectivity. By performing inversions on differenced arrival time data, the properties of the time-lapse feature can be directly constrained. We develop a differential traveltime tomography algorithm whichselects for compact solutions, i.e., models with a minimum area of support, through application of model-space iteratively reweighted least squares. Our technique is an adaptation of minimum support regularization methods previously explored within the potential theory community. We compare our inversion algorithm to the results obtained by traditional Tikhonov regularization for two simple synthetic models: one including several sharp localized anomalies and a second with smoother features. We use a more complicated synthetic test case based on multiphase flow results to illustrate the efficacy of compactness constraints for contaminant infiltration imaging. We apply the algorithm to a [Formula: see text]-sequestration-monitoring data set acquired at the Frio pilot site. We observe that in cases where the assumption of a localized anomaly is correct, the addition of compactness constraints improves image quality by reducing tomographic artifacts and spatial smearing of target features.


Sign in / Sign up

Export Citation Format

Share Document