Seismic anisotropy in exploration and reservoir characterization: An overview

Geophysics ◽  
2010 ◽  
Vol 75 (5) ◽  
pp. 75A15-75A29 ◽  
Author(s):  
Ilya Tsvankin ◽  
James Gaiser ◽  
Vladimir Grechka ◽  
Mirko van der Baan ◽  
Leon Thomsen

Recent advances in parameter estimation and seismic processing have allowed incorporation of anisotropic models into a wide range of seismic methods. In particular, vertical and tilted transverse isotropy are currently treated as an integral part of velocity fields employed in prestack depth migration algorithms, especially those based on the wave equation. We briefly review the state of the art in modeling, processing, and inversion of seismic data for anisotropic media. Topics include optimal parameterization, body-wave modeling methods, P-wave velocity analysis and imaging, processing in the [Formula: see text] domain, anisotropy estimation from vertical-seismic-profiling (VSP) surveys, moveout inversion of wide-azimuth data, amplitude-variation-with-offset (AVO) analysis, processing and applications of shear and mode-converted waves, and fracture characterization. When outlining future trends in anisotropy studies, we emphasize that continued progress in data-acquisition technology is likely to spur transition from transverse isotropy to lower anisotropic symmetries (e.g., orthorhombic). Further development of inversion and processing methods for such realistic anisotropic models should facilitate effective application of anisotropy parameters in lithology discrimination, fracture detection, and time-lapse seismology.

2011 ◽  
Vol 3 (2) ◽  
pp. 655-678 ◽  
Author(s):  
J. Plomerová ◽  
L. Vecsey ◽  
V. Babuška ◽  

Abstract. An international LAPNET array (2007–2009, http://www.oulu.fi/sgo-oty/lapnet) of the POLENET/LAPNET sub-project of the POLENET-IPY consortium, related to POLENET seismic and geodetic studies in the Arctic regions, consisted of about 60 broadband seismic stations located on the territory of northern Finland and adjacent parts of Sweden, Norway and Russia. We analyze relative P-wave travel-time deviations evaluated for a subset of 90 teleseismic events recorded by the LAPNET array and show examples of lateral variations of shear-wave splitting to demonstrate variability of fabrics of the Archean mantle lithosphere. The initial results clearly demonstrate the Archean mantle lithosphere consists of domains with consistent fabrics reflecting fossil anisotropic structures. 3-D self-consistent anisotropic models with inclined symmetry axes accommodate two independent sets of body-wave anisotropic observations. Individual domains are delimited by boundaries (sutures), where the anisotropic parameters change. The results obtained from the LAPNET array fill a gap in structural studies of the upper mantle beneath northern Fennoscandia.


Solid Earth ◽  
2011 ◽  
Vol 2 (2) ◽  
pp. 303-313 ◽  
Author(s):  
J. Plomerová ◽  
L. Vecsey ◽  
V. Babuška ◽  

Abstract. An international LAPNET array (2007–2009, http://www.oulu.fi/sgo-oty/lapnet) of the POLENET/LAPNET sub-project of the POLENET-IPY consortium, related to seismic and geodetic studies in the Arctic regions, consisted of about 60 broadband seismic stations located on the territory of northern Finland and adjacent parts of Sweden, Norway and Russia. We analyze relative P-wave travel-time deviations evaluated for a subset of 90 teleseismic events recorded by the LAPNET array and show examples of lateral variations of shear-wave splitting to demonstrate variability of fabrics of the Archean mantle lithosphere. The initial results clearly demonstrate the Archean mantle lithosphere consists of domains with consistent fabrics reflecting fossil anisotropic structures. 3-D self-consistent anisotropic models with inclined symmetry axes accommodate two independent sets of body-wave anisotropic observations. Individual domains are delimited by boundaries (sutures), where the anisotropic parameters change. The results obtained from the LAPNET array fill a gap in structural studies of the upper mantle beneath northern Fennoscandia.


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 268-284 ◽  
Author(s):  
Ilya Tsvankin

Description of reflection moveout from dipping interfaces is important in developing seismic processing methods for anisotropic media, as well as in the inversion of reflection data. Here, I present a concise analytic expression for normal‐moveout (NMO) velocities valid for a wide range of homogeneous anisotropic models including transverse isotropy with a tilted in‐plane symmetry axis and symmetry planes in orthorhombic media. In transversely isotropic media, NMO velocity for quasi‐P‐waves may deviate substantially from the isotropic cosine‐of‐dip dependence used in conventional constant‐velocity dip‐moveout (DMO) algorithms. However, numerical studies of NMO velocities have revealed no apparent correlation between the conventional measures of anisotropy and errors in the cosine‐of‐dip DMO correction (“DMO errors”). The analytic treatment developed here shows that for transverse isotropy with a vertical symmetry axis, the magnitude of DMO errors is dependent primarily on the difference between Thomsen parameters ε and δ. For the most common case, ε − δ > 0, the cosine‐of‐dip–corrected moveout velocity remains significantly larger than the moveout velocity for a horizontal reflector. DMO errors at a dip of 45 degrees may exceed 20–25 percent, even for weak anisotropy. By comparing analytically derived NMO velocities with moveout velocities calculated on finite spreads, I analyze anisotropy‐induced deviations from hyperbolic moveout for dipping reflectors. For transversely isotropic media with a vertical velocity gradient and typical (positive) values of the difference ε − δ, inhomogeneity tends to reduce (sometimes significantly) the influence of anisotropy on the dip dependence of moveout velocity.


Geophysics ◽  
2007 ◽  
Vol 72 (1) ◽  
pp. D1-D7 ◽  
Author(s):  
Yaping Zhu ◽  
Ilya Tsvankin ◽  
Pawan Dewangan ◽  
Kasper van Wijk

Anisotropic attenuation can provide sensitive attributes for fracture detection and lithology discrimination. This paper analyzes measurements of the P-wave attenuation coefficient in a transversely isotropic sample made of phenolic material. Using the spectral-ratio method, we estimate the group (effective) attenuation coefficient of P-waves transmitted through the sample for a wide range of propagation angles (from [Formula: see text] to [Formula: see text]) with the symmetry axis. Correction for the difference between the group and phase angles and for the angular velocity variation help us to obtain the normalized phase attenuation coefficient [Formula: see text] governed by the Thomsen-style attenuation-anisotropy parameters [Formula: see text] and [Formula: see text]. Whereas the symmetry axis of the angle-dependent coefficient [Formula: see text] practically coincides with that of the velocity function, the magnitude of the attenuation anisotropy far exceeds that of the velocity anisotropy. The quality factor [Formula: see text] increases more than tenfold from the symmetry axis (slow direction) to the isotropy plane (fast direction). Inversion of the coefficient [Formula: see text] using the Christoffel equation yields large negative values of the parameters [Formula: see text] and [Formula: see text]. The robustness of our results critically depends on several factors, such as the availability of an accurate anisotropic velocity model and adequacy of the homogeneous concept of wave propagation, as well as the choice of the frequency band. The methodology discussed here can be extended to field measurements of anisotropic attenuation needed for AVO (amplitude-variation-with-offset) analysis, amplitude-preserving migration, and seismic fracture detection.


Geophysics ◽  
1997 ◽  
Vol 62 (2) ◽  
pp. 521-532 ◽  
Author(s):  
Lev Vernik ◽  
Xingzhou Liu

Using ultrasonic velocity and anisotropy measurements on a variety of shales with different clay and kerogen content, clay mineralogy, and porosity at a wide range of effective pressure, we find that elastic anisotropy of shales increases substantially with compaction. The effect is attributed to both porosity reduction and smectite‐ to‐illite transformation with diagenesis. A means of kerogen content mapping using velocity versus porosity crossplot for shales is shown. Matrix anisotropy of shales dramatically increases with kerogen reaching the maximum values of about 0.4 at total organic carbon (TOC)=15–20%. A strong chemical softening effect was found in shales containing even minor amounts of swelling (smectite) clay when saturated with aqueous solution. This effect results in a significant P‐wave anisotropy reduction as compared to dry and oil‐saturated shales. Since mature black shales are normally oil wet, this effect can only have a local significance restricted to the wellbore wall. Accurate measurements of phase velocities, including velocities at a 45° direction to the bedding plane, allow us to immediately calculate elastic stiffnesses and anisotropic parameters. Intrinsic (high pressure) properties of shales display an ε > δ > 0 relation. Introduction of the bedding‐parallel microcracks in overpressured shales results in a δ decrease when fully fluid saturated and a δ increase when partially gas saturated, with a characteristic effect on the shape of the P‐wave velocity surface at small angles of incidence. Filtering the contribution of the intrinsic anisotropy of shales, it is possible to estimate the pore fluid phase, microcrack density, and aspect ratio parameters using seismic anisotropy measurements.


Author(s):  
Hitoshi Kawakatsu

ABSTRACT In a series of articles, Kawakatsu et al. (2015) and Kawakatsu (2016a,b, 2018) introduced and discussed a new parameter, ηκ, that characterizes the incidence angle dependence (relative to the symmetry axis) of seismic body-wave velocities in a transverse isotropy (TI) system. During the course of these exercises, several nontrivial consequences of TI were realized and summarized as follows: (1) P-wave velocity (anisotropy) strongly influences the conversion efficiency of P-to-S and S-to-P, as much as S-wave velocity perturbation does; (2) Rayleigh-wave phase velocity has substantial sensitivity to P-wave anisotropy near the surface; (3) a trade-off exists between ηκ and the VP/VS ratio if the latter is sought under an assumption of isotropy or the elliptic condition. Among these findings, the first two deserve careful attention in interpretation of results of popular seismic analysis methods, such as receiver function analysis and ambient-noise Rayleigh-wave dispersion analysis. We present simple example cases for such problems to delineate the effect in actual situations, as well as scalings among TI parameters of the crust and mantle materials or models that might help understanding to what extent the effect becomes important.


2013 ◽  
Vol 5 (2) ◽  
pp. 963-1005 ◽  
Author(s):  
V. Baptiste ◽  
A. Tommasi

Abstract. We calculated the seismic properties of 47 mantle xenoliths from 9 kimberlitic pipes in the Kaapvaal craton based on their modal composition, the crystal preferred orientations (CPO) of olivine, ortho- and clinopyroxene, and garnet, the Fe content of olivine, and the pressures and temperatures at which the rocks were equilibrated. These data allow constraining the variation of seismic anisotropy and velocities with depth. The fastest P wave and fast split shear wave (S1) polarization direction is always close to olivine [100] maximum. Changes in olivine CPO symmetry result in minor variations in the seismic anisotropy patterns. Seismic anisotropy is higher for high olivine contents and stronger CPO. Maximum P waves azimuthal anisotropy (AVp) ranges between 2.5 and 10.2% and S waves polarization anisotropy (AVs) between 2.7 and 8%. Seismic properties averaged in 20 km thick intervals depth are, however, very homogeneous. Based on these data, we predict the anisotropy that would be measured by SKS, Rayleigh (SV) and Love (SH) waves for 5 end-member orientations of the foliation and lineation. Comparison to seismic anisotropy data in the Kaapvaal shows that the coherent fast directions, but low delay times imaged by SKS studies and the low azimuthal anisotropy and SH faster than SV measured using surface waves may only be consistently explained by dipping foliations and lineations. The strong compositional heterogeneity of the Kaapvaal peridotite xenoliths results in up to 3% variation in density and in up to 2.3% of variation Vp, Vs and the Vp/Vs ratio. Fe depletion by melt extraction increases Vp and Vs, but decreases the Vp/Vs ratio and density. Orthopyroxene enrichment decreases the density and Vp, but increases Vs, strongly reducing the Vp/Vs ratio. Garnet enrichment increases the density, and in a lesser manner Vp and the Vp/Vs ratio, but it has little to no effect on Vs. These compositionally-induced variations are slightly higher than the velocity perturbations imaged by body-wave tomography, but cannot explain the strong velocity anomalies reported by surface wave studies. Comparison of density and seismic velocity profiles calculated using the xenoliths' compositions and equilibrium conditions to seismological data in the Kaapvaal highlights that: (i) the thickness of the craton is underestimated in some seismic studies and reaches at least 180 km, (ii) the deep sheared peridotites represent very local modifications caused and oversampled by kimberlites, and (iii) seismological models probably underestimate the compositional heterogeneity in the Kaapvaal mantle root, which occurs at a scale much smaller than the one that may be sampled seismologically.


Geophysics ◽  
2005 ◽  
Vol 70 (5) ◽  
pp. D43-D53 ◽  
Author(s):  
Xiaoxia Xu ◽  
Ilya Tsvankin ◽  
Andrés Pech

For processing and inverting reflection data, it is convenient to represent geometrical spreading through the reflection traveltime measured at the earth's surface. Such expressions are particularly important for azimuthally anisotropic models in which variations of geometrical spreading with both offset and azimuth can significantly distort the results of wide-azimuth amplitude-variation-with-offset (AVO) analysis. Here, we present an equation for relative geometrical spreading in laterally homogeneous, arbitrarily anisotropic media as a simple function of the spatial derivatives of reflection traveltimes. By employing the Tsvankin-Thomsen nonhyperbolic moveout equation, the spreading is represented through the moveout coefficients, which can be estimated from surface seismic data. This formulation is then applied to P-wave reflections in an orthorhombic layer to evaluate the distortions of the geometrical spreading caused by both polar and azimuthal anisotropy. The relative geometrical spreading of P-waves in homogeneous orthorhombic media is controlled by five parameters that are also responsible for time processing. The weak-anisotropy approximation, verified by numerical tests, shows that azimuthal velocity variations contribute significantly to geometrical spreading, and the existing equations for transversely isotropic media with a vertical symmetry axis (VTI) cannot be applied even in the vertical symmetry planes. The shape of the azimuthally varying spreading factor is close to an ellipse for offsets smaller than the reflector depth but becomes more complicated for larger offset-to-depth ratios. The overall magnitude of the azimuthal variation of the geometrical spreading for the moderately anisotropic model used in the tests exceeds 25% for a wide range of offsets. While the methodology developed here is helpful in modeling and analyzing anisotropic geometrical spreading, its main practical application is in correcting the wide-azimuth AVO signature for the influence of the anisotropic overburden.


2000 ◽  
Vol 3 (01) ◽  
pp. 88-97 ◽  
Author(s):  
R.D. Benson ◽  
T.L. Davis

Summary This article presents the results of a multidisciplinary, four-dimensional (4D) (time-lapse), three-component (3C) (multicomponent) seismic study of a CO2 injection project in vacuum field, New Mexico. The ability to sense bulk rock/fluid properties with 4D, 3C seismology enables characterization of the most important transport property of a reservoir, namely, permeability. Because of the high volume resolution of the 4D, 3C seismology, we can monitor the sweep efficiency of a production process to see if reserves are bypassed by channeling around lower permeability parts of the reservoir and the rate at which the channeling occurs. In doing so, we can change production processes to sweep the reservoir more efficiently. Introduction Improving reservoir performance and enhancing hydrocarbon recovery while reducing environmental impact are critical to the future of the petroleum industry. To do this, it must be possible to characterize reservoir parameters including fluid properties and their changes with time, i.e., dynamic reservoir characterization. The objectives of our research arerepeated acquisition of a three-dimensional (3D), three-component (3C) seismic survey;demonstrate the ability of 3D, 3C, and four-dimensional (4D), 3C seismology to detect and monitor rock/fluid property change associated with a production process;incorporate geological, petrophysical, petroleum engineering, and other geophysical studies;refine the reservoir model and recommend procedures for scaling up from a pilot injection program to partial field flood to achieve maximum sweep efficiency and minimize bypassed reservoir zones;link bulk rock/fluid property variation monitored by time-lapse multicomponent (4D, 3C) seismic surveying to dynamic attributes of the reservoir including permeability, fluids, and flow characterization. Three-dimensional, 3C seismology involves seismic data acquisition in three orientations at each receiver location—two orthogonal horizontal and one vertical. When three source components are used, nine times the amount of data of a conventional P-wave 3D survey can be recorded. Horizontal components of source and receiver displacements enable shear- (S-) wave recording; this is a powerful complement to vertical P-wave recording. Three-dimensional, 3C seismic surveys provide significantly more information about the rock/fluid properties of a reservoir than can be achieved from conventional P-wave seismic surveys alone. By combining P- and S-wave recording, the seismic ability to determine rock/fluid property changes in the subsurface is increased. Seismic wave propagation includes travel time, reflectivity, and the effects of anisotropy and attenuation. In-situ stress orientation and relative magnitudes can be derived from seismic anisotropy. Rock/fluid properties, including lithology and porosity, may be obtained from comparative travel times or velocities of P and S waves. Other rock/fluid properties, including permeability, may be determined from comparative P and S anisotropy, travel time, reflectivity, and attenuation measurements. By combining P- and S-wave recording, seismic wave propagation characteristics can be transformed into reservoir parameters. Introducing time as the "fourth dimension," new time-lapse (4D), 3C seismology is a tool to monitor production processes and to determine reservoir property variations under changing conditions. Using 4D, 3C seismic monitoring as an integral part of dynamic reservoir characterization, refinements can be made to production processes to improve reservoir hydrocarbon recovery. VP/VS ratios for both the fast S1 shear component and slow S2 shear component may provide a tool for separating bulk rock changes due to fluid property variations from bulk rock changes due to effective stress variations. Changes in shear wave anisotropy may reflect varying concentrations of open fractures and low aspect ratio pore structure in both a spatial and temporal sense across the reservoir. The permeability of a formation, or the connectivity of the pore space, will be the target in 4D, 3C seismology. Refinements made to reservoir characterization techniques and their applications, now extending into the fourth dimension, are an important new area of research. Benefits of this research will include improved reservoir characterization and correlative increased hydrocarbon recovery and reduction in operating costs through improved reservoir management. Geologic Setting Since early Permian time, the general evolution of the portion of the Permian Basin which includes vacuum field is that of a progressively shallowing-upward carbonate platform. Aggrading and prograding cycles represent, respectively, the results of high stand and still stand sea levels. At the shelf edge these platform carbonates typically grade into reef-type deposits such as the Abo, Goat Seep, and Capitan formations. The San Andres is an exception; no reef-like rocks have been detected. Beyond the shelf edge, in the Delaware basin, clastic rocks, especially siliciclastics, were deposited during a lowstand sea level. Vacuum field is located on a large anticlinal structure that plunges slightly to the east-northeast. The San Andres and Grayburg formations correspond to the rim of a broad carbonate shelf province to the north and northwest, northwest shelf, and of a deeper intracratonic basin, Delaware basin, on the southeast and east.1 The overall area including the Midland basin, northern and eastern shelves, and central basin platform are part of a major restricted intracratonic basin which existed during Permian time. West Texas and southeast New Mexico were in the low latitudes throughout the late Paleozoic period, making them an ideal location for carbonate sedimentation. As a consequence of this tropical environment, broad carbonate shelves were established on the margins of the Delaware and Midland basins.2


Geophysics ◽  
1995 ◽  
Vol 60 (3) ◽  
pp. 631-650 ◽  
Author(s):  
Mark E. Mathisen ◽  
Anthony A. Vasiliou ◽  
Paul Cunningham ◽  
J. Shaw ◽  
J. H. Justice ◽  
...  

Time‐lapse crosswell seismic data acquired with a cemented receiver cable have been processed into P‐ and S‐wave tomograms which image heavy oil sand lithofacies and changes as a result of steam injection. Twenty‐seven crosswell surveys were acquired between two wells over a 3.5 month period before, during, and after a 34‐day, 30 MBBL [Formula: see text] steam injection cycle. Interpretation was based on correlations with reservoir data and models, observation well data, and engineering documentation of the production history and steam cycle. Baseline S‐ and P‐wave tomograms image reservoir sand flow units and areas affected by past cyclic steam injection. S‐wave tomograms define lithology and porosity contrasts between the excellent reservoir quality, “high flow” turbidite channel facies and the interbedded “low to moderate flow” bioturbated levee facies. The reservoir dip of approximately 20° is defined by the velocity contrast between lithofacies. P‐wave baseline tomograms image lithology, porosity, structure, and several low velocity zones caused by past steam injection. Previous steam‐heat injection caused the formation of gas which reduced velocities as much as several thousand ft/s (600 m/s), an amount which obscures the velocity contrast between lithofacies and smaller velocity reductions as a result of temperature alone. Time‐lapse and difference P‐wave tomograms document several areas with small decreases in velocity during steam injection and larger decreases after cyclic steam injection. Velocity reductions range from 300 to 900 ft/s (90 to 270 m/s) adjacent to and above injectors located 20 to 50 feet (6 to 15 m) from the tomogram cross‐section. Poisson’s ratio tomograms show a significant decrease (.10) in the same area, and include low values indicative of gas saturation. Continuous injectors located 50 to 350 feet (15 to 100 m) from the survey area also caused a progressive decrease in velocity of the “high flow” channel sands during the time‐lapse survey. Interdisciplinary interpretation indicates that tomograms not only complement other borehole‐derived reservoir characterization and temperature monitoring data but can be used to quantitatively characterize interwell reservoir properties and monitor changes as a result of the thermal recovery process. Monitoring results over 3.5 months confirms that stratification has controlled the flow of steam, in contrast to gravity override. This suggests that tomographic images of reservoir flow‐units and gas‐bearing high temperature zones should be useful for positioning wells and optimizing injection intervals, steam volumes, and producing well completions.


Sign in / Sign up

Export Citation Format

Share Document