Unexpected Consequences of Transverse Isotropy

Author(s):  
Hitoshi Kawakatsu

ABSTRACT In a series of articles, Kawakatsu et al. (2015) and Kawakatsu (2016a,b, 2018) introduced and discussed a new parameter, ηκ, that characterizes the incidence angle dependence (relative to the symmetry axis) of seismic body-wave velocities in a transverse isotropy (TI) system. During the course of these exercises, several nontrivial consequences of TI were realized and summarized as follows: (1) P-wave velocity (anisotropy) strongly influences the conversion efficiency of P-to-S and S-to-P, as much as S-wave velocity perturbation does; (2) Rayleigh-wave phase velocity has substantial sensitivity to P-wave anisotropy near the surface; (3) a trade-off exists between ηκ and the VP/VS ratio if the latter is sought under an assumption of isotropy or the elliptic condition. Among these findings, the first two deserve careful attention in interpretation of results of popular seismic analysis methods, such as receiver function analysis and ambient-noise Rayleigh-wave dispersion analysis. We present simple example cases for such problems to delineate the effect in actual situations, as well as scalings among TI parameters of the crust and mantle materials or models that might help understanding to what extent the effect becomes important.

2021 ◽  
Vol 2110 (1) ◽  
pp. 012002
Author(s):  
A R Puhi ◽  
P Ariyanto ◽  
B Pranata ◽  
B S Prayitno

Abstract Lampung region is seismically and volcanic active because located in subduction zone of Indo-Australian and Eurasian plate. We applied receiver function and stacking H-k analysis to estimate the crustal structure in Lampung region. We used teleseismic earthquake data (epicenter distance 30°-90°) and M>6 recorded at 3 seismic broadband stations owned by Agency for Meteorology Climatology and Geophysics (BMKG). Those stations are PSLI (located on Sebesi Island approximately 20 km from Anak Krakatau) represented volcanic arc zone, KASI (located on Kota Agung, Lampung) represented Sumatran Fault Zone and KLI (located on Kotabumi, Lampung) represented back-arc basin. Crustal thickness estimated at PSLI station 32-36 km, KASI station 36-40 km, and KLI station 30-36 km. Furthermore, in 3 stations P wave velocity estimated 4.1-11 km/s, S wave velocity 2.2-6.2 km/s, while vp/vs value estimated 1.7-2.05. We estimated Anak Krakatau volcano’s magma chamber beneath PSLI station in depth 16-30 km, Great Sumatran Fault structure in depth about 8-14 km beneath KASI station, and thick sediment layer about 4 km near surface beneath KLI station. This study result is expected to explain more detail crustal of Lampung region and can be useful for developing of BMKG’s seismic monitoring systems and other geophysical fields in future.


2021 ◽  
Author(s):  
Wanbo Xiao ◽  
Siqi Lu ◽  
Yanbin Wang

<p>Despite the popularity of the horizontal to vertical spectral ratio (HVSR) method in site effect studies, the origin of the H/V peaks has been controversial since this method was proposed. Many previous studies mainly focused on the explanation of the first or single peak of the H/V ratio, trying to distinguish between the two hypotheses — the S-wave resonance and ellipticity of Rayleigh wave. However, it is common both in numerical simulations and practical experiments that the H/V ratio exhibits multiple peaks, which is essential to explore the origin of the H/V peaks.</p><p>The cause for the multiple H/V peaks has not been clearly figured out, and once was simply explained as the result of multi subsurface layers. Therefore, we adopted numerical method to simulate the ambient noise in various layered half-space models and calculated the H/V ratio curves for further comparisons. The peak frequencies of the H/V curves accord well with the theoretical frequencies of S-wave resonance in two-layer models, whose frequencies only depend on the S wave velocity and the thickness of the subsurface layer. The same is true for models with varying model parameters. Besides, the theoretical formula of the S-wave resonance in multiple-layer models is proposed and then supported by numerical investigations as in the cases of two-layer models. We also extended the S-wave resonance to P-wave resonance and found that its theoretical frequencies fit well with the V/H peaks, which could be an evidence to support the S-wave resonance theory from a new perspective. By contrast, there are obvious differences between the higher orders of the H/V ratio peaks and the higher orders of Rayleigh wave ellipticity curves both in two-layer and multiple-layer models. The Rayleigh wave ellipticity curves are found to be sensitive to the Poisson’s ratio and the thickness of the subsurface layer, so the variation of the P wave velocity can affect the peak frequencies of the Rayleigh wave ellipticity curves while the H/V peaks show slight change. The Rayleigh wave ellipticity theory is thus proved to be inappropriate for the explanation of the multiple H/V peaks, while the possible effects of the Rayleigh wave on the fundamental H/V peak still cannot be excluded.</p><p>Based on the analyses above, we proposed a new evidence to support the claim that the peak frequencies of the H/V ratio curve, except the fundamental peaks, are caused by S-wave resonance. The relationship between the P-wave resonance and the V/H peaks may also find further application.</p>


Geophysics ◽  
1995 ◽  
Vol 60 (4) ◽  
pp. 1095-1107 ◽  
Author(s):  
Ilya Tsvankin ◽  
Leon Thomsen

In anisotropic media, the short‐spread stacking velocity is generally different from the root‐mean‐square vertical velocity. The influence of anisotropy makes it impossible to recover the vertical velocity (or the reflector depth) using hyperbolic moveout analysis on short‐spread, common‐midpoint (CMP) gathers, even if both P‐ and S‐waves are recorded. Hence, we examine the feasibility of inverting long‐spread (nonhyperbolic) reflection moveouts for parameters of transversely isotropic media with a vertical symmetry axis. One possible solution is to recover the quartic term of the Taylor series expansion for [Formula: see text] curves for P‐ and SV‐waves, and to use it to determine the anisotropy. However, this procedure turns out to be unstable because of the ambiguity in the joint inversion of intermediate‐spread (i.e., spreads of about 1.5 times the reflector depth) P and SV moveouts. The nonuniqueness cannot be overcome by using long spreads (twice as large as the reflector depth) if only P‐wave data are included. A general analysis of the P‐wave inverse problem proves the existence of a broad set of models with different vertical velocities, all of which provide a satisfactory fit to the exact traveltimes. This strong ambiguity is explained by a trade‐off between vertical velocity and the parameters of anisotropy on gathers with a limited angle coverage. The accuracy of the inversion procedure may be significantly increased by combining both long‐spread P and SV moveouts. The high sensitivity of the long‐spread SV moveout to the reflector depth permits a less ambiguous inversion. In some cases, the SV moveout alone may be used to recover the vertical S‐wave velocity, and hence the depth. Success of this inversion depends on the spreadlength and degree of SV‐wave velocity anisotropy, as well as on the constraints on the P‐wave vertical velocity.


2021 ◽  
Vol 873 (1) ◽  
pp. 012102
Author(s):  
Madaniya Oktariena ◽  
Wahyu Triyoso ◽  
Fatkhan Fatkhan ◽  
Sigit Sukmono ◽  
Erlangga Septama ◽  
...  

Abstract The existence of anisotropy phenomena in the subsurface will affect the image quality of seismic data. Hence a prior knowledge of the type of anisotropy is quite essential, especially when dealing with deep water targets. The preliminary result of the anisotropy of the well-based modelling in deep water exploration and development is discussed in this study. Anisotropy types are modelled for Vertical Transverse Isotropy (VTI) and Horizontal Transverse Isotropy (HTI) based on Thomsen Parameters of ε and γ. The parameters are obtained from DSI Logging paired with reference δ value for modelling. Three initial conditions are then analysed. The first assumption is isotropic, in which the P-Wave Velocity, S-Wave Velocity, and Density Log modelled at their in-situ condition. The second and third assumptions are anisotropy models that are VTI and HTI. In terms of HTI, the result shows that the model of CDP Gather in the offset domain has a weak distortion in Amplitude Variation with Azimuth (AVAz). However, another finding shows a relatively strong hockey effect in far offset, which indicates that the target level is a VTI dominated type. It is supported by the geomechanical analysis result in which vertical stress acts as the maximum principal axis while horizontal stress is close to isotropic one. To sum up, this prior anisotropy knowledge obtained based on this study could guide the efficiency guidance in exploring the deep water environment.


2014 ◽  
Vol 51 (4) ◽  
pp. 407-417 ◽  
Author(s):  
H.S. Kim ◽  
J.F. Cassidy ◽  
S.E. Dosso ◽  
H. Kao

This paper presents results of a passive-source seismic mapping study in the Nechako–Chilcotin plateau of central British Columbia, with the ultimate goal of contributing to assessments of hydrocarbon and mineral potential of the region. For the present study, an array of nine seismic stations was deployed in 2006–2007 to sample a wide area of the Nechako–Chilcotin plateau. The specific goal was to map the thickness of the sediments and volcanic cover, and the overall crustal thickness and structural geometry beneath the study area. This study utilizes recordings of about 40 distant earthquakes from 2006 to 2008 to calculate receiver functions, and constructs S-wave velocity models for each station using the Neighbourhood Algorithm inversion. The surface sediments are found to range in thickness from about 0.8 to 2.7 km, and the underlying volcanic layer from 1.8 to 4.7 km. Both sediments and volcanic cover are thickest in the central portion of the study area. The crustal thickness ranges from 22 to 36 km, with an average crustal thickness of about 30–34 km. A consistent feature observed in this study is a low-velocity zone at the base of the crust. This study complements other recent studies in this area, including active-source seismic studies and magnetotelluric measurements, by providing site-specific images of the crustal structure down to the Moho and detailed constraints on the S-wave velocity structure.


Geophysics ◽  
1987 ◽  
Vol 52 (4) ◽  
pp. 564-567 ◽  
Author(s):  
J. Wright

Studies have shown that elastic properties of materials such as shale and chalk are anisotropic. With the increasing emphasis on extraction of lithology and fluid content from changes in reflection amplitude with shot‐to‐group offset, one needs to know the effects of anisotropy on reflectivity. Since anisotropy means that velocity depends upon the direction of propagation, this angular dependence of velocity is expected to influence reflectivity changes with offset. These effects might be particularly evident in deltaic sand‐shale sequences since measurements have shown that the P-wave velocity of shales in the horizontal direction can be 20 percent higher than the vertical P-wave velocity. To investigate this behavior, a computer program was written to find the P- and S-wave reflectivities at an interface between two transversely isotropic media with the axis of symmetry perpendicular to the interface. Models for shale‐chalk and shale‐sand P-wave reflectivities were analyzed.


2020 ◽  
Author(s):  
Poulami Roy ◽  
Kajaljyoti Borah

<p>Cratons are representative of the oldest cores of continental crusts. Study of cratons is important  as they preserve the pristine nature of continental crusts as well as they have economic significance as a major source of the world's mineral deposits. The crustal thickness, crustal composition, structure and physical properties of crust-mantle transition (the Moho) are the key parameters for understanding the formation and evolution of continental crust. The ratio of  seismic P-wave and S-wave velocity (Vp/Vs) is used as a parameter to understand the petrologic nature of the Earth's crust. Using these parameters, we address the crustal properties of all Archean cratons. The teleseismic P-wave receiver function analysis reveals that all the Eoarchean (4-3.6 Ga) cratons (Superior, North Atlantic Craton, North China Craton, Yilgarn, Zimbabwe, Kaapvaal) have crustal thickness ranges between 34-42 km and Vp/Vs ratio 1.68-1.79, the Paleoarchean (3.6-3.2 Ga) cratons (Baltic shield, Pilbara, Tanzania, Grunehogna) have 29-52 km crustal thickness and Vp/Vs ratio 1.7-1.85, the Mesoarchean (3.2-2.8 Ga) cratons (Sao Francisco, Guapore, Yangtze, Antananarivo) have 36-53 km thickness and Vp/Vs ratio 1.7-1.9, and Neoarchean (2.8-2.5 Ga) cratons (Guiana, Anabar, Gawler, Napier, Tarim) have 36-59 km thickness and Vp/Vs ratio 1.64-1.95. The nature of crust-mantle transition is overall sharp and flat.  We also found that the crusts which are stabilized earlier, are thinner compared to the later stabilized crusts. Our findings are well-correlated with the craton evolution process predicted by Durrheim and Mooney (1994), where older crusts are thin due to delamination process and relatively younger crusts are thick due to basaltic underplating. Our result of higher Vp/Vs ratio in the relatively younger crusts corroborates with the mafic nature of the crust whereas the older crusts are felsic-intermediate resulting lower Vp/Vs ratio. Our study is unique as it includes most of the global cratons and suggests a global model of continental crust formation and evolution process.</p>


Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. D369-D381 ◽  
Author(s):  
Elliot J. H. Dahl ◽  
Kyle T. Spikes

Most subsurface formations of value to exploration contain a heterogeneous fluid-filled pore space, where local fluid-pressure effects can significantly change the velocities of passing seismic waves. To better understand the effect of these local pressure gradients on borehole wave propagation, we combined Chapman’s squirt-flow model with Biot’s poroelastic theory. We applied the unified theory to a slow and fast formation with permeable borehole walls containing different quantities of compliant pores. These results are compared with those for a formation with no soft pores. The discrete wavenumber summation method with a monopole point source generates the wavefields consisting of the P-, S-, leaky-P, Stoneley, and pseudo-Rayleigh waves. The resulting synthetic wave modes are processed using a weighted spectral semblance (WSS) algorithm. We found that the resulting WSS dispersion curves closely matched the analytical expressions for the formation compressional velocity and solutions to the period equation for dispersion for the P-wave, Stoneley-wave, and pseudo-Rayleigh wave phase velocities in the slow and fast formations. The WSS applied to the S-wave part of the waveforms, however, did not correlate as well with its respective analytical expression for formation S-wave velocity, most likely due to interference of the pseudo-Rayleigh wave. To separate changes in formation P- and S-wave velocities versus fluid-flow effects on the Stoneley-wave mode, we computed the slow-P wave dispersion for the same formations. We found that fluid-saturated soft pores significantly affected the P- and S-wave effective formation velocities, whereas the slow-P wave velocity was rather insensitive to the compliant pores. Thus, the large phase-velocity effect on the Stoneley wave mode was mainly due to changes in effective formation P- and S-wave velocities and not to additional fluid mobility.


Sign in / Sign up

Export Citation Format

Share Document