scholarly journals 3D crosshole ERT for aquifer characterization and monitoring of infiltrating river water

Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. G49-G59 ◽  
Author(s):  
Ilaria Coscia ◽  
Stewart A. Greenhalgh ◽  
Niklas Linde ◽  
Joseph Doetsch ◽  
Laurent Marescot ◽  
...  

The hydrogeological properties and responses of a productive aquifer in northeastern Switzerland are investigated. For this purpose, 3D crosshole electrical resistivity tomography (ERT) is used to define the main lithological structures within the aquifer (through static inversion) and to monitor the water infiltration from an adjacent river. During precipitation events and subsequent river flooding, the river water resistivity increases. As a consequence, the electrical characteristics of the infiltrating water can be used as a natural tracer to delineate preferential flow paths and flow velocities. The focus is primarily on the experiment installation, data collection strategy, and the structural characterization of the site and a brief overview of the ERT monitoring results. The monitoring system comprises 18 boreholes each equipped with 10 electrodes straddling the entire thickness of the gravel aquifer. A multichannel resistivity system programmed to cycle through various four-point electrode configurations of the 180 electrodes in a rolling sequence allows for the measurement of approximately 15,500 apparent resistivity values every 7 h on a continuous basis. The 3D static ERT inversion of data acquired under stable hydrological conditions provides a base model for future time-lapse inversion studies and the means to investigate the resolving capability of our acquisition scheme. In particular, it enables definition of the main lithological structures within the aquifer. The final ERT static model delineates a relatively high-resistivity, low-porosity, intermediate-depth layer throughout the investigated aquifer volume that is consistent with results from well logging and seismic and radar tomography models. The next step will be to define and implement an appropriate time-lapse ERT inversion scheme using the river water as a natural tracer. The main challenge will be to separate the superposed time-varying effects of water table height, temperature, and salinity variations associated with the infiltrating water.

Author(s):  
Simone Di Prima ◽  
Thierry Winiarski ◽  
Rafael Angulo-Jaramillo ◽  
Ryan D. Stewart ◽  
Mirko Castellini ◽  
...  

<p>Preferential flow is more the rule than the exception, in particular during water infiltration experiments. In this study, we demonstrate the potential of GPR monitoring to detect preferential flows during water infiltration. We monitored time-lapse ground penetrating radar (GPR) surveys in the vicinity of single-ring infiltration experiments and created a three-dimensional (3D) representation of infiltrated water below the devices. For that purpose, radargrams were constructed from GPR transects conducted over two grids (1 m × 1 m) before and after the infiltration tests. The obtained signal was represented in 3D and a threshold was chosen to part the domain into wetted and non-wetted zones, allowing the determination of the infiltration bulb. That methodology was used to detect the infiltration below the devices and clearly pointed at nonuniform flows in correspondence with the heterogeneous soil structures. The protocol presented in this study represents a practical and valuable tool for detecting preferential flows at the scale of a single ring infiltration experiment.</p>


Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. E239-E250 ◽  
Author(s):  
Ilaria Coscia ◽  
Niklas Linde ◽  
Stewart Greenhalgh ◽  
Tobias Vogt ◽  
Alan Green

The infiltration of river water into aquifers is of high relevance to drinking-water production and is a key driver of biogeochemical processes in the hyporheic and riparian zone, but the distribution and quantification of the infiltrating water are difficult to determine using conventional hydrological methods (e.g., borehole logging and tracer tests). By time-lapse inverting crosshole ERT (electrical resistivity tomography) monitoring data, we imaged groundwater flow patterns driven by river water infiltrating a perialpine gravel aquifer in northeastern Switzerland. This was possible because the electrical resistivity of the infiltrating water changed during rainfall-runoff events. Our time-lapse resistivity models indicated rather complex flow patterns as a result of spatially heterogeneous bank filtration and aquifer heterogeneity. The upper part of the aquifer was most affected by the river infiltrate, and the highest groundwater velocities and possible preferential flow occurred at shallow to intermediate depths. Time series of the reconstructed resistivity models matched groundwater electrical resistivity data recorded on borehole loggers in the upper and middle parts of the aquifer, whereas the resistivity models displayed smaller variations and delayed responses with respect to the logging data in the lower part. This study demonstrated that crosshole ERT monitoring of natural electrical resistivity variations of river infiltrate could be used to image and quantify 3D bank filtration and aquifer dynamics at a high spatial resolution.


2021 ◽  
Author(s):  
Ludmila Roder ◽  
Simone Di Prima ◽  
Sergio Campus ◽  
Filippo Giadrossich ◽  
Ryan D. Stewart ◽  
...  

<p>Research over the past several decades has shown that preferential flow is more the rule than the exception. However, our collective understanding of preferential flow processes has been limited by a lack of suitable methods to detect and visualize the initiation and evolution of non-uniform wetting at high spatial and temporal resolutions, particularly in real-world settings. In this study, we investigate water infiltration initiation by tree trunk and root systems. We carried out time-lapse ground penetrating radar (GPR) surveys in conjunction with a simulated stemflow event to provide evidence of root-induced preferential flow and generate a three-dimensional representation of the wetted zone.</p><p>We established a survey grid (3.5 m × 5 m, with a local slope of 10.3°), consisting of ten horizontal and thirteen vertical parallel survey lines with 0.5 m intervals between them. The horizontal lines were downslope-oriented. The grid was placed around a Quercus suber L. We collected a total of 46 (2 GPR surveys × 23 survey lines) radargrams using an IDS (Ingegneria Dei Sistemi S.p.A.) Ris Hi Mod v. 1.0 system with a 900-MHz antenna mounted on a GPR cart. Two grid GPR surveys were carried out before and after the artificial stemflow experiment. In the experiment, we applied 100 L of brilliant blue dye (E133) solution on the tree trunk. The stemflow volume of 100 L corresponded to 63.2 mm of incident precipitation, considering a crown projected area of 201 m<sup>2</sup> and a 1.3% conversion rate of rainfall to stemflow. Trench profiles were carefully excavated with hand tools to remove soil and detect both root location and size and areas of infiltration and preferential pathways on the soil profile.</p><p>The majority (84.4%) of artificially applied stemflow infiltrated into the soil, while the remaining 15.6% generated overland flow, which was collected by a small v-shaped plastic channel placed into a groove previously scraped on the downhill side of the tree. The 3D diagram clearly demarcated the dimension and shape of the wetted zone, thus providing evidence of root-induced preferential flow along coarse roots. The wetted zone extended downslope up to a horizontal distance of 3 m from the trunk and down to a depth of approximately 0.7 m. Put all together, this study shows the importance of accounting for plant and trees trunk and root systems when quantifying infiltration.</p>


2021 ◽  
Vol 299 ◽  
pp. 113672
Author(s):  
Chunfeng Chen ◽  
Xin Zou ◽  
Ashutosh Kumar Singh ◽  
Xiai Zhu ◽  
Wanjun Zhang ◽  
...  

2017 ◽  
Vol 21 (7) ◽  
pp. 3727-3748 ◽  
Author(s):  
Lisa Angermann ◽  
Conrad Jackisch ◽  
Niklas Allroggen ◽  
Matthias Sprenger ◽  
Erwin Zehe ◽  
...  

Abstract. The phrase form and function was established in architecture and biology and refers to the idea that form and functionality are closely correlated, influence each other, and co-evolve. We suggest transferring this idea to hydrological systems to separate and analyze their two main characteristics: their form, which is equivalent to the spatial structure and static properties, and their function, equivalent to internal responses and hydrological behavior. While this approach is not particularly new to hydrological field research, we want to employ this concept to explicitly pursue the question of what information is most advantageous to understand a hydrological system. We applied this concept to subsurface flow within a hillslope, with a methodological focus on function: we conducted observations during a natural storm event and followed this with a hillslope-scale irrigation experiment. The results are used to infer hydrological processes of the monitored system. Based on these findings, the explanatory power and conclusiveness of the data are discussed. The measurements included basic hydrological monitoring methods, like piezometers, soil moisture, and discharge measurements. These were accompanied by isotope sampling and a novel application of 2-D time-lapse GPR (ground-penetrating radar). The main finding regarding the processes in the hillslope was that preferential flow paths were established quickly, despite unsaturated conditions. These flow paths also caused a detectable signal in the catchment response following a natural rainfall event, showing that these processes are relevant also at the catchment scale. Thus, we conclude that response observations (dynamics and patterns, i.e., indicators of function) were well suited to describing processes at the observational scale. Especially the use of 2-D time-lapse GPR measurements, providing detailed subsurface response patterns, as well as the combination of stream-centered and hillslope-centered approaches, allowed us to link processes and put them in a larger context. Transfer to other scales beyond observational scale and generalizations, however, rely on the knowledge of structures (form) and remain speculative. The complementary approach with a methodological focus on form (i.e., structure exploration) is presented and discussed in the companion paper by Jackisch et al.(2017).


2016 ◽  
Vol 10 (2) ◽  
pp. 136-148
Author(s):  
Renata Marques de Oliveira ◽  
Antonia Regina Ferreira Furegato

The objective of this study was to investigate elements of the personal and psychiatric history, as well as the challenges related to motherhood, of a young schizophrenic female, through person-centered therapeutic interaction. The investigation had an exploratory scope, undertaken in a teaching hospital and data were collected during nondirective interaction on the part of the nurse with a young schizophrenic woman who had been treated in the institution for 10 years. Thematic analysis of the content was undertaken, with emphasis on the nuclei of meaning, identification of the themes and definition of the categories. The patient, called L. in this study, was 30 years old, had a two-year-old child and was three months pregnant when data were collected. Her trajectory was characterized by doubts, fears and uncertainties. The episodes of hospitalization, the coexistence with other patients, and the medications promoted insight into the symptoms, and acceptance of the diagnosis. The main challenge was experiencing pregnancy and the puerperium concomitantly with the psychiatric treatment. The interpersonal relationship established evidenced that, the young woman felling understood and that her needs were attended, overcame several difficulties she had reported and felt fulfilled and integrated into her social environment.


2017 ◽  
Vol 21 (11) ◽  
pp. 5503-5515 ◽  
Author(s):  
Hiroyuki Hirashima ◽  
Francesco Avanzi ◽  
Satoru Yamaguchi

Abstract. The heterogeneous movement of liquid water through the snowpack during precipitation and snowmelt leads to complex liquid water distributions that are important for avalanche and runoff forecasting. We reproduced the formation of capillary barriers and the development of preferential flow through snow using a three-dimensional water transport model, which was then validated using laboratory experiments of liquid water infiltration into layered, initially dry snow. Three-dimensional simulations assumed the same column shape and size, grain size, snow density, and water input rate as the laboratory experiments. Model evaluation focused on the timing of water movement, thickness of the upper layer affected by ponding, water content profiles and wet snow fraction. Simulation results showed that the model reconstructs relevant features of capillary barriers, including ponding in the upper layer, preferential infiltration far from the interface, and the timing of liquid water arrival at the snow base. In contrast, the area of preferential flow paths was usually underestimated and consequently the averaged water content in areas characterized by preferential flow paths was also underestimated. Improving the representation of preferential infiltration into initially dry snow is necessary to reproduce the transition from a dry-snow-dominant condition to a wet-snow-dominant one, especially in long-period simulations.


First Break ◽  
2017 ◽  
Vol 35 (8) ◽  
Author(s):  
Atsushi Suzaki ◽  
Shohei Minato ◽  
Ranajit Ghose ◽  
Chisato Konishi ◽  
Naoki Sakai

2021 ◽  
Vol 74 (2) ◽  
pp. 78-85
Author(s):  
T. A. Bazarbayeva ◽  
◽  
B.D. Rakhyshova ◽  
A. A. Oshakbay ◽  
◽  
...  

The article considers the geo-ecological situation of the Ili basin. The definition of the physical and geographical location, topography, soil and vegetation of the region was given. It was determined that the management of the efficient use of water resources in the Ili river basin depends primarily on the water resources of the rivers entering the basin and the level of Lake Balkhash. Factors determining the spring flow of the Ili River are shown. Due to the development of the middle reaches of the Ili River, the whole river ecosystem, rice fields and shangel massifs, excessive use of mineral fertilizers and chemicals has led to a decrease in the quality of river water. In addition to the shortage of water resources, anthropogenic measures related to the rapid development of agriculture affect the quality of river water. Physical and chemical studies of water samples taken from the Ili River were carried out. It was clearly observed that the content of trace elements of zinc, lead and iron in water is higher than the approved maximum allowable concentration. According to the results of the study, the effect of micronutrients on the human body was considered.


Sign in / Sign up

Export Citation Format

Share Document