A finite element multifrontal method for 3D CSEM modeling in the frequency domain

Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. E101-E115 ◽  
Author(s):  
Nuno Vieira da Silva ◽  
Joanna V. Morgan ◽  
Lucy MacGregor ◽  
Mike Warner

There has been a recent increase in the use of controlled-source electromagnetic (CSEM) surveys in the exploration for oil and gas. We developed a modeling scheme for 3D CSEM modeling in the frequency domain. The electric field was decomposed in primary and secondary components to eliminate the singularity originated by the source term. The primary field was calculated using a closed form solution, and the secondary field was computed discretizing a second-order partial differential equation for the electric field with the edge finite element. The solution to the linear system of equations was obtained using a massive parallel multifrontal solver, because such solvers are robust for indefinite and ill-conditioned linear systems. Recent trends in parallel computing were investigated for their use in mitigating the computational overburden associated with the use of a direct solver, and of its feasibility for 3D CSEM forward modeling with the edge finite element. The computation of the primary field was parallelized, over the computational domain and the number of sources, using a hybrid model of parallelism. When using a direct solver, the attainment of multisource solutions was only competitive if the same factors are used to achieve a solution for multi right-hand sides. This aspect was also investigated using the presented methodology. We tested our proposed approach using 1D and 3D synthetic models, and they demonstrated that it is robust and suitable for 3D CSEM modeling using a distributed memory system. The codes could thus be used to help design new surveys, as well to estimate subsurface conductivities through the implementation of an appropriate inversion scheme.

2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Isaiah Ramos ◽  
Young Ho Park ◽  
Jordan Ulibarri-Sanchez

In this paper, we developed an exact analytical 3D elasticity solution to investigate mechanical behavior of a thick multilayered anisotropic fiber-reinforced pressure vessel subjected to multiple mechanical loadings. This closed-form solution was implemented in a computer program, and analytical results were compared to finite element analysis (FEA) calculations. In order to predict through-thickness stresses accurately, three-dimensional finite element meshes were used in the FEA since shell meshes can only be used to predict in-plane strength. Three-dimensional FEA results are in excellent agreement with the analytical results. Finally, using the proposed analytical approach, we evaluated structural damage and failure conditions of the composite pressure vessel using the Tsai–Wu failure criteria and predicted a maximum burst pressure.


2013 ◽  
Vol 856 ◽  
pp. 147-152
Author(s):  
S.H. Adarsh ◽  
U.S. Mallikarjun

Shape Memory Alloys (SMA) are promising materials for actuation in space applications, because of the relatively large deformations and forces that they offer. However, their complex behaviour and interaction of several physical domains (electrical, thermal and mechanical), the study of SMA behaviour is a challenging field. Present work aims at correlating the Finite Element (FE) analysis of SMA with closed form solutions and experimental data. Though sufficient literature is available on closed form solution of SMA, not much detail is available on the Finite element Analysis. In the present work an attempt is made for characterization of SMA through solving the governing equations by established closed form solution, and finally correlating FE results with these data. Extensive experiments were conducted on 0.3mm diameter NiTinol SMA wire at various temperatures and stress conditions and these results were compared with FE analysis conducted using MSC.Marc. A comparison of results from finite element analysis with the experimental data exhibits fairly good agreement.


2019 ◽  
Vol 54 (6) ◽  
pp. 773-790 ◽  
Author(s):  
Torquato Garulli ◽  
Anita Catapano ◽  
Daniele Fanteria ◽  
Julien Jumel ◽  
Eric Martin

In this paper, a procedure to obtain fully uncoupled multi-directional stacking sequences for delamination specimens is outlined. For such sequences, in-plane, membrane-bending and torsion–bending coupling terms are null (in closed-form solution in the framework of classical laminated plate theory) for the entire stack and for both its halves, which form two arms in the pre-cracked region of a typical delamination specimen. This is achieved exploiting the superposition of quasi-trivial quasi-homogeneous stacking sequences, according to appropriate rules. Any pair of orientations of the plies embedding the delamination plane can be obtained. To assess the effectiveness of the proposed approach, a fully uncoupled multi-directional sequence is designed and compared to other relevant sequences proposed in the literature. Finite element simulations of double cantilever beam test are performed using classic virtual crack closure technique and a revised state-of-the-art virtual crack closure technique formulation too. Some interesting conclusions regarding proper design of multidirectional stacks for delamination tests are drawn. Moreover, the results confirm the suitability of fully uncoupled multi-directional sequences for delamination tests. Thanks to their properties, these sequences might lay the foundations for the development of standard test procedures for delamination in angle-ply interfaces.


Author(s):  
Tianyu Wang ◽  
Mohammad Noori ◽  
Wael A. Altabey

Over the past two decades, extensive research has been carried out in the field of structural health monitoring for damage detection in structural systems. Some crack detection methods are based on the finite element model of a beam and use vibration data are developed. These methods identify the crack by updating of the finite element model according to the vibration data of structure. This paper proposes a novel method for crack detection in Euler–Bernoulli beams based on the closed-form solution of mode shapes using Bayesian inference. The expression of vibration modes is derived analytically with the crack parameters as unknown variables. Subsequently, the Bayesian inference is used to obtain the probability density function of crack parameters and to evaluate the uncertainty of the modes. Finally, the method is applied to a series of numerical examples, including a beam with a single-crack and multi-cracks, to verify the effectiveness of this method.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 40
Author(s):  
Heba Kamal ◽  
. .

The decline in the over ground utilizable space and increment in development of metro structures, cut and cover structures are winding up fairly difficult to conceptualize and build. In this examination, a nonlinear two dimensional limited component investigation was completed to show the New Austrian Tunneling Method (NATM) burrow developed in frail shake utilizing the business limited component with joint programming PHASE 2.The validity of the numerical modeling procedure performed by the author was checked by making back-analysis for an actual case study of Strengen Tunnel which is one of the biggest expressways in western Austria.  A comprehensive parametric study was performed on a hypothetical circle tunnel. Two dimensional numerical simulations with the finite element with joint software PHASE 2 have been performed to ground behaviour with   the results of the numerical analysis are presented and   discussed for recommendations for future work. In general the tangential stress at side wall and crown  obtained from  finite element with joints are  nearly equal or higher than the closed form solution and equivalent continuum.                                                                                   


1990 ◽  
Vol 17 (5) ◽  
pp. 835-843 ◽  
Author(s):  
H. Marzouk ◽  
S. Mohan

The present work deals with formulation of theoretical and analytical methods leading to the development of column strength curves. The formulations were developed for both elastic and inelastic behaviour. Two types of reinforcement have been developed for strengthening the W-shape columns under load. Since the column strength curves are based in part on the magnitude and distribution of residual stresses, it is extremely important to consider the new pattern of residual stresses due to welding process. Also, the welding sequence will affect the magnitude and distribution of residual stresses. Theoretical formulations leading to a closed-form solution for the prediction of critical load were developed for two types of strengthening using the superposition of original residual, new welding, and initial loading stresses. A nonlinear finite element analysis based on the large deformation theory of stability was used to predict the strengthened column critical load. It takes into consideration the effect of cooling residual stresses and new welding residual stresses. The formulations were incorporated with gradual penetration of yielding, the spreading of inelastic zones along the member length, the presence of residual stresses, and strain hardening of the material. Experiments were carried out to determine the actual capacity of strengthened columns. Seven specimens were tested using two and four strengthening plates. The welding stresses were measured through a series of experiments, and it was found that the parabolic distribution is a very close approximation to the actual new welding stress distribution. Key words: reinforcement of steel columns, welding stresses, welding sequence, strengthening of existing structures, buckling, steel plating, finite element.


Geophysics ◽  
2002 ◽  
Vol 67 (1) ◽  
pp. 68-76 ◽  
Author(s):  
Tae Jong Lee ◽  
Jung Hee Suh ◽  
Hee Joon Kim ◽  
Yoonho Song ◽  
Ki Ha Lee

We present an imaging scheme for mapping cross‐hole electrical conductivity using nonlinear traveltime tomography. Data used are peak arrival time estimates based on an approximate wavefield transform of the synthetic frequency‐domain electromagnetic (EM) field. Direct transformation of frequency‐domain EM fields to wavefields is known to be an ill‐posed problem because the kernel of integral transform is highly damped. In this study, instead of solving such an unstable problem, we approximate the wavefield in the transformed domain via a ray series expansion. If reflected and refracted energy is weak compared to that of direct wave, picking of the peak arrival time may be reduced to estimating the coefficients of the leading term in the ray series expansion. This simplification is valid when the conductivity contrast between background medium and the target anomalous body is small. The first three terms in the expansion are identical to the closed‐form solution for the vertical magnetic field caused by a vertical magnetic dipole source in a homogeneous whole‐space. An adaptive simulated annealing scheme is used to estimate the coefficients of ray series. For a whole‐space, exact traveltime can be extracted using only four frequency samples in our approach, whereas the direct numerical wavefield transform needed at least ten frequencies to construct a reasonable waveform. Nonlinear traveltime tomography using thusly‐extracted peak arrivals from synthetic data shows a reasonable image of the conductivity structure between boreholes.


Author(s):  
Chithranjan Nadarajah ◽  
Benjamin F. Hantz ◽  
Sujay Krishnamurthy

This paper is Part 2 of two papers illustrating how isochronous stress strain curves can be used to calculate creep stresses and damage for pressure vessel components. Part 1 [1], illustrated the use of isochronous stress strain curves to obtain creep stresses and damages on two simple example problems which were solved using closed form solution. In Part 2, the isochronous method is implemented in finite element analysis to determine creep stresses and damages on pressure vessel components. Various different pressure vessel components are studied using this method and the results obtained using this method is compared time explicit Omega creep model. The results obtained from the isochronous method is found to be in good agreement with the time explicit Omega creep model.


Sign in / Sign up

Export Citation Format

Share Document