An open-source full 3D electromagnetic modeler for 1D VTI media in Python: empymod

Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. WB9-WB19 ◽  
Author(s):  
Dieter Werthmüller

The Python-code empymod computes the 3D electromagnetic field in a layered earth with vertical transverse isotropy by combining and extending two earlier presented algorithms in this journal. The bottleneck in frequency- and time-domain calculations of electromagnetic responses derived in the wavenumber-frequency domain is the transformations from the wavenumber to the space domain and from the frequency to the time domain, the so-called Hankel and Fourier transforms. Three different Hankel transform methods (quadrature, quadrature-with-extrapolation [QWE], and filters) and four different Fourier transform methods (fast Fourier transform [FFT], FFTLog, QWE, and filters) are included in empymod, which allows us to compare these different methods in terms of speed and precision. The best transform in terms of speed and precision depends on the modeled frequencies. Published digital filters for the Hankel transform are very fast and precise for frequencies in the range of controlled-source electromagnetic data, but they fail in the frequency range of ground-penetrating radar. Conventional quadrature, on the other hand, is in comparison very slow but can model any frequency. Examples comparing empymod with analytical solutions and with existing electromagnetic modelers illustrate the capabilities of empymod.

2018 ◽  
Vol 12 (7-8) ◽  
pp. 76-83
Author(s):  
E. V. KARSHAKOV ◽  
J. MOILANEN

Тhe advantage of combine processing of frequency domain and time domain data provided by the EQUATOR system is discussed. The heliborne complex has a towed transmitter, and, raised above it on the same cable a towed receiver. The excitation signal contains both pulsed and harmonic components. In fact, there are two independent transmitters operate in the system: one of them is a normal pulsed domain transmitter, with a half-sinusoidal pulse and a small "cut" on the falling edge, and the other one is a classical frequency domain transmitter at several specially selected frequencies. The received signal is first processed to a direct Fourier transform with high Q-factor detection at all significant frequencies. After that, in the spectral region, operations of converting the spectra of two sounding signals to a single spectrum of an ideal transmitter are performed. Than we do an inverse Fourier transform and return to the time domain. The detection of spectral components is done at a frequency band of several Hz, the receiver has the ability to perfectly suppress all sorts of extra-band noise. The detection bandwidth is several dozen times less the frequency interval between the harmonics, it turns out thatto achieve the same measurement quality of ground response without using out-of-band suppression you need several dozen times higher moment of airborne transmitting system. The data obtained from the model of a homogeneous half-space, a two-layered model, and a model of a horizontally layered medium is considered. A time-domain data makes it easier to detect a conductor in a relative insulator at greater depths. The data in the frequency domain gives more detailed information about subsurface. These conclusions are illustrated by the example of processing the survey data of the Republic of Rwanda in 2017. The simultaneous inversion of data in frequency domain and time domain can significantly improve the quality of interpretation.


2021 ◽  
Vol 3 (1) ◽  
pp. 031-036
Author(s):  
S. A. GOROVOY ◽  
◽  
V. I. SKOROKHODOV ◽  
D. I. PLOTNIKOV ◽  
◽  
...  

This paper deals with the analysis of interharmonics, which are due to the presence of a nonlinear load. The tool for the analysis was a mathematical apparatus - wavelet packet transform. Which has a number of advantages over the traditional Fourier transform. A simulation model was developed in Simulink to simulate a non-stationary non-sinusoidal mode. The use of the wavelet packet transform will allow to determine the mode parameters with high accuracy from the obtained wavelet coefficients. It also makes it possible to obtain information, both in the frequency domain of the signal and in the time domain.


Author(s):  
Yongzhi Qu ◽  
Gregory W. Vogl ◽  
Zechao Wang

Abstract The frequency response function (FRF), defined as the ratio between the Fourier transform of the time-domain output and the Fourier transform of the time-domain input, is a common tool to analyze the relationships between inputs and outputs of a mechanical system. Learning the FRF for mechanical systems can facilitate system identification, condition-based health monitoring, and improve performance metrics, by providing an input-output model that describes the system dynamics. Existing FRF identification assumes there is a one-to-one mapping between each input frequency component and output frequency component. However, during dynamic operations, the FRF can present complex dependencies with frequency cross-correlations due to modulation effects, nonlinearities, and mechanical noise. Furthermore, existing FRFs assume linearity between input-output spectrums with varying mechanical loads, while in practice FRFs can depend on the operating conditions and show high nonlinearities. Outputs of existing neural networks are typically low-dimensional labels rather than real-time high-dimensional measurements. This paper proposes a vector regression method based on deep neural networks for the learning of runtime FRFs from measurement data under different operating conditions. More specifically, a neural network based on an encoder-decoder with a symmetric compression structure is proposed. The deep encoder-decoder network features simultaneous learning of the regression relationship between input and output embeddings, as well as a discriminative model for output spectrum classification under different operating conditions. The learning model is validated using experimental data from a high-pressure hydraulic test rig. The results show that the proposed model can learn the FRF between sensor measurements under different operating conditions with high accuracy and denoising capability. The learned FRF model provides an estimation for sensor measurements when a physical sensor is not feasible and can be used for operating condition recognition.


2019 ◽  
Vol 11 (16) ◽  
pp. 1839
Author(s):  
Xu Meng ◽  
Sixin Liu ◽  
Yi Xu ◽  
Lei Fu

Full waveform inversion (FWI) can yield high resolution images and has been applied in Ground Penetrating Radar (GPR) for around 20 years. However, appropriate selection of the initial models is important in FWI because such an inversion is highly nonlinear. The conventional way to obtain the initial models for GPR FWI is ray-based tomogram inversion which suffers from several inherent shortcomings. In this paper, we develop a Laplace domain waveform inversion to obtain initial models for the time domain FWI. The gradient expression of the Laplace domain waveform inversion is deduced via the derivation of a logarithmic object function. Permittivity and conductivity are updated by using the conjugate gradient method. Using synthetic examples, we found that the value of the damping constant in the inversion cannot be too large or too small compared to the dominant frequency of the radar data. The synthetic examples demonstrate that the Laplace domain waveform inversion provide slightly better initial models for the time domain FWI than the ray-based inversion. Finally, we successfully applied the algorithm to one field data set, and the inverted results of the Laplace-based FWI show more details than that of the ray-based FWI.


1988 ◽  
Vol 43 (3) ◽  
pp. 280-282 ◽  
Author(s):  
N. Heineking ◽  
W. Stahl ◽  
H. Dreizler

Abstract Radiofrequency microwave double resonance has proved as a valuable method in microwave spectroscopy in the frequency domain. We present comparable experiments in the time domain Fourier transform spectroscopy.


Author(s):  
GIULIO FANTI ◽  
ROBERTO BASSO ◽  
MICHELE BERNARDI ◽  
UMBERTO VERZA

This paper describes an innovative technique for the quality control of gear pumps based on the frequency analysis of the oscillations of the discharge pressure using a new mathematical tool called "the spectrum of the power cepstrum." It consists in applying Fourier transform of the pressure data sampled in the time domain three times consecutively. The innovative technique makes it possible to obtain an acceptance mask for a set of gear pumps in the same series, in which the class and entity of a defect can be detected.


2011 ◽  
Vol 1 ◽  
pp. 221-225
Author(s):  
Zhi Wei Lin ◽  
Li Da ◽  
Hao Wang ◽  
Wei Han ◽  
Fan Lin

The real-time pitch shifting process is widely used in various types of music production. The pitch shifting technology can be divided into two major types, the time domain type and the frequency domain type. Compared with the time domain method, the frequency domain method has the advantage of large shifting scale, low total cost of computing and the more flexibility of the algorithm. However, the use of Fourier Transform in frequency domain processing leads to the inevitable inherent frequency leakage effects which decrease the accuracy of the pitch shifting effect. In order to restrain the side effect of Fourier Transform, window functions are used to fall down the spectrum-aliasing. In practical processing, Haimming Window and Blackman Window are frequently used. In this paper, we compare both the effect of the two window functions in the restraint of frequency leakage and the performance and accuracy in subjective based on the traditional phase vocoder[1]. Experiment shows that Haimming Window is generally better than Blackman Window in pitch shifting process.


Author(s):  
Hua Yi ◽  
Peichang Ouyang ◽  
Tao Yu ◽  
Tao Zhang

Continuous wavelet transform (CWT) is a linear convolution of signal and wavelet function for a fixed scale. This paper studies the algorithm of CWT with Morlet wavelet as mother wavelet by using nonzero-padded linear convolution. The time domain filter, which is a non-causal filter, is the sample of wavelet function. By making generalized discrete Fourier transform (GDFT) and inverse transform for this filter, we can get a geometrically weighted periodic extension of the filter when evaluated outside its original support. From this extension of the time domain filter, we can get a causal filter. In this paper, GDFT-based algorithm for CWT, which has a more concise form than that of linear convolution proposed by Jorge Martinez, is constructed by using this causal filter. The analytic expression of the GDFT of this filter, which is essential for GDFT-based algorithm for CWT, is deduced in this paper. The numerical experiments show that the calculation results of GDFT-based algorithm are stable and reliable; the running speed of GDFT-based algorithm is faster than that of the other two algorithms studied in our previous work.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Xiao-Bing Zhang ◽  
Yun-Hui Li ◽  
Xiao-Meng Cui

This paper discusses a new method for calculating active power in the multiwavelet domain. When the voltage and current waveforms are analyzed using multiwavelet, the active power can be calculated by simply adding the products of the multiwavelet coefficients without having to reconstruct the signals back to the time domain first and then using the traditional integration. From the simulation result, we can see that the results using multiwavelet are better than the ones using wavelet and Fourier Transforms no matter which prefilter is used.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Jhonatan Camacho-Navarro ◽  
R. Guzmán-López ◽  
Sergio Gómez ◽  
Marco Flórez

The procedures used to estimate structural modal parameters as natural frequency, damping ratios, and mode shapes are generally based on frequency methods. However, methods of time-frequency analysis are highly sensible to the parameters used to calculate the discrete Fourier transform: windowing, resolution, and preprocessing. Thus, the uncertainty of the modal parameters is increased if a proper parameter selection is not considered. In this work, the influence of three different time domain windows functions (Hanning, flat-top, and rectangular) used to estimate modal parameters are discussed in the framework of ISO 18431 standard. Experimental results are conducted over an AISI 1020 steel plate, which is excited by means of a hammer element. Vibration response is acquired by using acceleration records according to the ISO 7626-5 reference guides. The results are compared with a theoretical method and it is obtained that the flat-top window is the best function for experimental modal analysis.


Sign in / Sign up

Export Citation Format

Share Document