Estimating P- and S-wave inverse quality factors from observed seismic data using an attenuative elastic impedance

Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. R173-R187 ◽  
Author(s):  
Huaizhen Chen ◽  
Kristopher A. Innanen ◽  
Tiansheng Chen

P- and S-wave inverse quality factors quantify seismic wave attenuation, which is related to several key reservoir parameters (porosity, saturation, and viscosity). Estimating the inverse quality factors from observed seismic data provides additional and useful information during gas-bearing reservoir prediction. First, we have developed an approximate reflection coefficient and attenuative elastic impedance (QEI) in terms of the inverse quality factors, and then we established an approach to estimate elastic properties (P- and S-wave impedances, and density) and attenuation (P- and S-wave inverse quality factors) from seismic data at different incidence angles and frequencies. The approach is implemented as a two-step inversion: a model-based and damped least-squares inversion for QEI, and a Bayesian Markov chain Monte Carlo inversion for the inverse quality factors. Synthetic data tests confirm that P- and S-wave impedances and inverse quality factors are reasonably estimated in the case of moderate data error or noise. Applying the established approach to a real data set is suggestive of the robustness of the approach, and furthermore that physically meaningful inverse quality factors can be estimated from seismic data acquired over a gas-bearing reservoir.

Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. U67-U76 ◽  
Author(s):  
Robert J. Ferguson

The possibility of improving regularization/datuming of seismic data is investigated by treating wavefield extrapolation as an inversion problem. Weighted, damped least squares is then used to produce the regularized/datumed wavefield. Regularization/datuming is extremely costly because of computing the Hessian, so an efficient approximation is introduced. Approximation is achieved by computing a limited number of diagonals in the operators involved. Real and synthetic data examples demonstrate the utility of this approach. For synthetic data, regularization/datuming is demonstrated for large extrapolation distances using a highly irregular recording array. Without approximation, regularization/datuming returns a regularized wavefield with reduced operator artifacts when compared to a nonregularizing method such as generalized phase shift plus interpolation (PSPI). Approximate regularization/datuming returns a regularized wavefield for approximately two orders of magnitude less in cost; but it is dip limited, though in a controllable way, compared to the full method. The Foothills structural data set, a freely available data set from the Rocky Mountains of Canada, demonstrates application to real data. The data have highly irregular sampling along the shot coordinate, and they suffer from significant near-surface effects. Approximate regularization/datuming returns common receiver data that are superior in appearance compared to conventional datuming.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Xinpeng Pan ◽  
Guangzhi Zhang ◽  
Yian Cui

The seismic attenuation should be considered while accounting for the effect of anisotropy on the seismic wave propagating through a saturated fractured porous medium. Based on the modified linear-slip theory and anisotropic Gassmann’s equation, we derive an analytical expression for a linearized PP-wave reflection coefficient and an azimuthal attenuation elastic impedance (AAEI) equation in terms of fluid/porosity term, shear modulus, density, dry normal and tangential fracture weaknesses, and compressional (P-wave) and shear (S-wave) attenuation parameters in a weak-attenuation isotropic background rock containing one single set of vertical aligned fractures. We then propose an AAEI inversion method to characterize the characteristics of fluids and fractures using two kinds of constrained regularizations in such a fractured porous medium. The proposed approach is finally confirmed by both the synthetic and real data sets acquired over a saturated fractured porous reservoir.


Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. N17-N24 ◽  
Author(s):  
Zhaoyun Zong ◽  
Xingyao Yin ◽  
Guochen Wu

The fluid term in the Biot-Gassmann equation plays an important role in reservoir fluid discrimination. The density term imbedded in the fluid term, however, is difficult to estimate because it is less sensitive to seismic amplitude variations. We combined poroelasticity theory, amplitude variation with offset (AVO) inversion, and identification of P- and S-wave moduli to present a stable and physically meaningful method to estimate the fluid term, with no need for density information from prestack seismic data. We used poroelasticity theory to express the fluid term as a function of P- and S-wave moduli. The use of P- and S-wave moduli made the derivation physically meaningful and natural. Then we derived an AVO approximation in terms of these moduli, which can then be directly inverted from seismic data. Furthermore, this practical and robust AVO-inversion technique was developed in a Bayesian framework. The objective was to obtain the maximum a posteriori solution for the P-wave modulus, S-wave modulus, and density. Gaussian and Cauchy distributions were used for the likelihood and a priori probability distributions, respectively. The introduction of a low-frequency constraint and statistical probability information to the objective function rendered the inversion more stable and less sensitive to the initial model. Tests on synthetic data showed that all the parameters can be estimated well when no noise is present and the estimated P- and S-wave moduli were still reasonable with moderate noise and rather smooth initial model parameters. A test on a real data set showed that the estimated fluid term was in good agreement with the results of drilling.


2019 ◽  
Vol 7 (3) ◽  
pp. SE237-SE249 ◽  
Author(s):  
Motaz Alfarraj ◽  
Ghassan AlRegib

Recent applications of machine learning algorithms in the seismic domain have shown great potential in different areas such as seismic inversion and interpretation. However, such algorithms rarely enforce geophysical constraints — the lack of which might lead to undesirable results. To overcome this issue, we have developed a semisupervised sequence modeling framework based on recurrent neural networks for elastic impedance inversion from multiangle seismic data. Specifically, seismic traces and elastic impedance (EI) traces are modeled as a time series. Then, a neural-network-based inversion model comprising convolutional and recurrent neural layers is used to invert seismic data for EI. The proposed workflow uses well-log data to guide the inversion. In addition, it uses seismic forward modeling to regularize the training and to serve as a geophysical constraint for the inversion. The proposed workflow achieves an average correlation of 98% between the estimated and target EI using 10 well logs for training on a synthetic data set.


2019 ◽  
Vol 220 (2) ◽  
pp. 794-805
Author(s):  
Huaizhen Chen

SUMMARY Based on an attenuation model, we first express frequency-dependent P- and S-wave attenuation factors as a function of P-wave maximum attenuation factor, and then we re-express P- and S-wave velocities in anelastic media and derive frequency-dependent stiffness parameters in terms of P-wave maximum attenuation factor. Using the derived stiffness parameters, we propose frequency-dependent reflection coefficient in terms of P- and S-wave moduli at critical frequency and P-wave maximum attenuation factor for the case of an interface separating two attenuating media. Based on the derived reflection coefficient, we establish an approach to utilize different frequency components of observed seismic data to estimate elastic properties (P- and S-wave moduli and density) and attenuation factor, and following a Bayesian framework, we construct the objective function and an iterative method is employed to solve the inversion problem. Tests on synthetic data confirm that the proposed approach makes a stable and robust estimation of unknown parameters in the case of seismic data containing a moderate noise/error. Applying the proposed approach to a real data set illustrates that a reliable attenuation factor is obtained from observed seismic data, and the ability of distinguishing oil-bearing reservoirs is improved combining the estimated elastic properties and P-wave attenuation factor.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. C81-C92 ◽  
Author(s):  
Helene Hafslund Veire ◽  
Hilde Grude Borgos ◽  
Martin Landrø

Effects of pressure and fluid saturation can have the same degree of impact on seismic amplitudes and differential traveltimes in the reservoir interval; thus, they are often inseparable by analysis of a single stacked seismic data set. In such cases, time-lapse AVO analysis offers an opportunity to discriminate between the two effects. We quantify the uncertainty in estimations to utilize information about pressure- and saturation-related changes in reservoir modeling and simulation. One way of analyzing uncertainties is to formulate the problem in a Bayesian framework. Here, the solution of the problem will be represented by a probability density function (PDF), providing estimations of uncertainties as well as direct estimations of the properties. A stochastic model for estimation of pressure and saturation changes from time-lapse seismic AVO data is investigated within a Bayesian framework. Well-known rock physical relationships are used to set up a prior stochastic model. PP reflection coefficient differences are used to establish a likelihood model for linking reservoir variables and time-lapse seismic data. The methodology incorporates correlation between different variables of the model as well as spatial dependencies for each of the variables. In addition, information about possible bottlenecks causing large uncertainties in the estimations can be identified through sensitivity analysis of the system. The method has been tested on 1D synthetic data and on field time-lapse seismic AVO data from the Gullfaks Field in the North Sea.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. R199-R217 ◽  
Author(s):  
Xintao Chai ◽  
Shangxu Wang ◽  
Genyang Tang

Seismic data are nonstationary due to subsurface anelastic attenuation and dispersion effects. These effects, also referred to as the earth’s [Formula: see text]-filtering effects, can diminish seismic resolution. We previously developed a method of nonstationary sparse reflectivity inversion (NSRI) for resolution enhancement, which avoids the intrinsic instability associated with inverse [Formula: see text] filtering and generates superior [Formula: see text] compensation results. Applying NSRI to data sets that contain multiples (addressing surface-related multiples only) requires a demultiple preprocessing step because NSRI cannot distinguish primaries from multiples and will treat them as interference convolved with incorrect [Formula: see text] values. However, multiples contain information about subsurface properties. To use information carried by multiples, with the feedback model and NSRI theory, we adapt NSRI to the context of nonstationary seismic data with surface-related multiples. Consequently, not only are the benefits of NSRI (e.g., circumventing the intrinsic instability associated with inverse [Formula: see text] filtering) extended, but also multiples are considered. Our method is limited to be a 1D implementation. Theoretical and numerical analyses verify that given a wavelet, the input [Formula: see text] values primarily affect the inverted reflectivities and exert little effect on the estimated multiples; i.e., multiple estimation need not consider [Formula: see text] filtering effects explicitly. However, there are benefits for NSRI considering multiples. The periodicity and amplitude of the multiples imply the position of the reflectivities and amplitude of the wavelet. Multiples assist in overcoming scaling and shifting ambiguities of conventional problems in which multiples are not considered. Experiments using a 1D algorithm on a synthetic data set, the publicly available Pluto 1.5 data set, and a marine data set support the aforementioned findings and reveal the stability, capabilities, and limitations of the proposed method.


2020 ◽  
Vol 223 (3) ◽  
pp. 1565-1583
Author(s):  
Hoël Seillé ◽  
Gerhard Visser

SUMMARY Bayesian inversion of magnetotelluric (MT) data is a powerful but computationally expensive approach to estimate the subsurface electrical conductivity distribution and associated uncertainty. Approximating the Earth subsurface with 1-D physics considerably speeds-up calculation of the forward problem, making the Bayesian approach tractable, but can lead to biased results when the assumption is violated. We propose a methodology to quantitatively compensate for the bias caused by the 1-D Earth assumption within a 1-D trans-dimensional Markov chain Monte Carlo sampler. Our approach determines site-specific likelihood functions which are calculated using a dimensionality discrepancy error model derived by a machine learning algorithm trained on a set of synthetic 3-D conductivity training images. This is achieved by exploiting known geometrical dimensional properties of the MT phase tensor. A complex synthetic model which mimics a sedimentary basin environment is used to illustrate the ability of our workflow to reliably estimate uncertainty in the inversion results, even in presence of strong 2-D and 3-D effects. Using this dimensionality discrepancy error model we demonstrate that on this synthetic data set the use of our workflow performs better in 80 per cent of the cases compared to the existing practice of using constant errors. Finally, our workflow is benchmarked against real data acquired in Queensland, Australia, and shows its ability to detect the depth to basement accurately.


2019 ◽  
Vol 7 (3) ◽  
pp. T701-T711
Author(s):  
Jianhu Gao ◽  
Bingyang Liu ◽  
Shengjun Li ◽  
Hongqiu Wang

Hydrocarbon detection is always one of the most critical sections in geophysical exploration, which plays an important role in subsequent hydrocarbon production. However, due to the low signal-to-noise ratio and weak reflection amplitude of deep seismic data, some conventional methods do not always provide favorable hydrocarbon prediction results. The interesting dolomite reservoirs in Central Sichuan are buried over an average depth of 4500 m, and the dolomite rocks have a low porosity below approximately 4%, which is measured by well-logging data. Furthermore, the dominant system of pores and fractures as well as strong heterogeneity along the lateral and vertical directions lead to some difficulties in describing the reservoir distribution. Spectral decomposition (SD) has become successful in illuminating subsurface features and can also be used to identify potential hydrocarbon reservoirs by detecting low-frequency shadows. However, the current applications for hydrocarbon detection always suffer from low resolution for thin reservoirs, probably due to the influence of the window function and without a prior constraint. To address this issue, we developed sparse inverse SD (SISD) based on the wavelet transform, which involves a sparse constraint of time-frequency spectra. We focus on investigating the applications of sparse spectral attributes derived from SISD to deep marine dolomite hydrocarbon detection from a 3D real seismic data set with an area of approximately [Formula: see text]. We predict and evaluate gas-bearing zones in two target reservoir segments by analyzing and comparing the spectral amplitude responses of relatively high- and low-frequency components. The predicted results indicate that most favorable gas-bearing areas are located near the northeast fault zone in the upper reservoir segment and at the relatively high structural positions in the lower reservoir segment, which are in good agreement with the gas-testing results of three wells in the study area.


2015 ◽  
Vol 3 (1) ◽  
pp. SF43-SF54 ◽  
Author(s):  
Shelby L. Peterie ◽  
Richard D. Miller

Tunnel locations are accurately interpreted from diffraction sections of focused mode converted P- to S-wave diffractions from a perpendicular tunnel and P-wave diffractions from a nonperpendicular (oblique) tunnel. Near-surface tunnels are ideal candidates for diffraction imaging due to their small size relative to the seismic wavelength and large acoustic impedance contrast at the tunnel interface. Diffraction imaging algorithms generally assume that the velocities of the primary wave and the diffracted wave are approximately equal, and that the diffraction apex is recorded directly above the scatterpoint. Scattering phenomena from shallow tunnels with kinematic properties that violate these assumptions were observed in one field data set and one synthetic data set. We developed the traveltime equations for mode-converted and oblique diffractions and demonstrated a diffraction imaging algorithm designed for the roll-along style of acquisition. Potential processing and interpretation pitfalls specific to these diffraction types were identified. Based on our observations, recommendations were made to recognize and image mode-converted and oblique diffractions and accurately interpret tunnel depth, horizontal location, and azimuth with respect to the seismic line.


Sign in / Sign up

Export Citation Format

Share Document