Using laboratory data to understand how pore aspect ratio influences elastic parameters and AVO

Geophysics ◽  
2021 ◽  
pp. 1-50
Author(s):  
Kamal Moravej ◽  
Alison Malcolm

Pore geometry is an important parameter in reservoir characterization that affects the permeability of reservoirs and can also be a controlling factor on the impact of pressure and saturation on reservoirs elastic properties. We use SLS (Selective Laser Sintering) 3D printing technology to build physical models to experimentally investigate the impacts of pore aspect ratio on P-, and S- wave velocities and amplitude variation with offset (AVO). We printed six models to study the effects of the pore aspect ratio of prolate and oblate pore structures on elastic properties and AVO signatures. We find that the P-wave velocity is reduced by decreasing the pore aspect ratio (flatter pore structure), whereas the shear wave velocity is less sensitive to the pore aspect ratio. This effect is reduced when the samples are water saturated. We present new experimental and processing techniques to extract realistic AVO signatures from our experimental data and show that the pore aspect ratio has similar effects on AVO as fluid compressibility. This shows that not considering the pore aspect ratio in AVO analysis can lead to misleading interpretations. We further show that these effects are reduced in water-saturated samples.

Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. WC71-WC81 ◽  
Author(s):  
Weitao Sun ◽  
Fansheng Xiong ◽  
Jing Ba ◽  
José M. Carcione

Reservoir rocks are heterogeneous porous media saturated with multiphase fluids, in which strong wave dissipation and velocity dispersion are closely associated with fabric heterogeneities and patchy saturation at different scales. The irregular solid inclusions and fluid patches are ubiquitous in nature, whereas the impact of geometry on wave dissipation is still not well-understood. We have investigated the dependence of wave attenuation and velocity on patch geometry. The governing equations for wave propagation in a porous medium, containing fluid/solid heterogeneities of ellipsoidal triple-layer patches, are derived from the Lagrange equations on the basis of the potential and kinetic energies. Harmonic functions describe the wave-induced local fluid flow of an ellipsoidal patch. The effects of the aspect ratio on wave velocity are illustrated with numerical examples and comparisons with laboratory measurements. The results indicate that the P-wave velocity dispersion and attenuation depend on the aspect ratio of the ellipsoidal heterogeneities, especially in the intermediate frequency range. In the case of Fort Union sandstone, the P-wave velocity increases toward an upper bound as the aspect ratio decreases. The example of a North Sea sandstone clearly indicates that introducing ellipsoidal heterogeneities gives a better description of laboratory data than that based on spherical patches. The unexpected high-velocity values previously reported and ascribed to sample heterogeneities are explained by varying the aspect ratio of the inclusions (or patches).


2005 ◽  
Vol 42 (6) ◽  
pp. 1205-1222 ◽  
Author(s):  
Gabriela Fernández-Viejo ◽  
Ron M Clowes ◽  
J Kim Welford

Shear-wave seismic data recorded along four profiles during the SNoRE 97 (1997 Slave – Northern Cordillera Refraction Experiment) refraction – wide-angle reflection experiment in northwestern Canada are analyzed to provide S-wave velocity (Vs) models. These are combined with previous P-wave velocity (Vp) models to produce cross sections of the ratio Vp/Vs for the crust and upper mantle. The Vp/Vs values are related to rock types through comparisons with published laboratory data. The Slave craton has low Vp/Vs values of 1.68–1.72, indicating a predominantly silicic crustal composition. Higher values (1.78) for the Great Bear and eastern Hottah domains of the Wopmay orogen imply a more mafic than average crustal composition. In the western Hottah and Fort Simpson arc, values of Vp/Vs drop to ∼1.69. These low values continue westward for 700 km into the Foreland and Omineca belts of the Cordillera, providing support for the interpretation from coincident seismic reflection studies that much of the crust from east of the Cordilleran deformation front to the Stikinia terrane of the Intermontane Belt consists of quartzose metasedimentary rocks. Stikinia shows values of 1.78–1.73, consistent with its derivation as a volcanic arc terrane. Upper mantle velocity and ratio values beneath the Slave craton indicate an ultramafic peridotitic composition. In the Wopmay orogen, the presence of low Vp/Vs ratios beneath the Hottah – Fort Simpson transition indicates the presence of pyroxenite in the upper mantle. Across the northern Cordillera, low Vp values and a moderate-to-high ratio in the uppermost mantle are consistent with the region's high heat flow and the possible presence of partial melt.


2019 ◽  
Vol 38 (10) ◽  
pp. 762-769
Author(s):  
Patrick Connolly

Reflectivities of elastic properties can be expressed as a sum of the reflectivities of P-wave velocity, S-wave velocity, and density, as can the amplitude-variation-with-offset (AVO) parameters, intercept, gradient, and curvature. This common format allows elastic property reflectivities to be expressed as a sum of AVO parameters. Most AVO studies are conducted using a two-term approximation, so it is helpful to reduce the three-term expressions for elastic reflectivities to two by assuming a relationship between P-wave velocity and density. Reduced to two AVO components, elastic property reflectivities can be represented as vectors on intercept-gradient crossplots. Normalizing the lengths of the vectors allows them to serve as basis vectors such that the position of any point in intercept-gradient space can be inferred directly from changes in elastic properties. This provides a direct link between properties commonly used in rock physics and attributes that can be measured from seismic data. The theory is best exploited by constructing new seismic data sets from combinations of intercept and gradient data at various projection angles. Elastic property reflectivity theory can be transferred to the impedance domain to aid in the analysis of well data to help inform the choice of projection angles. Because of the effects of gradient measurement errors, seismic projection angles are unlikely to be the same as theoretical angles or angles derived from well-log analysis, so seismic data will need to be scanned through a range of angles to find the optimum.


Geophysics ◽  
2007 ◽  
Vol 72 (1) ◽  
pp. B1-B7 ◽  
Author(s):  
Abdullatif A. Al-Shuhail

Vertical aligned fractures can significantly enhance the horizontal permeability of a tight reservoir. Therefore, it is important to know the fracture porosity and direction in order to develop the reservoir efficiently. P-wave AVOA (amplitude variation with offset and azimuth) can be used to determine these fracture parameters. In this study, I present a method for inverting the fracture porosity from 2D P-wave seismic data. The method is based on a modeling result that shows that the anisotropic AVO (amplitude variation with offset) gradient is negative and linearly dependent on the fracture porosity in a gas-saturated reservoir, whereas the gradient is positive and linearly dependent on the fracture porosity in a liquid-saturated reservoir. This assumption is accurate as long as the crack aspect ratio is less than 0.1 and the ratio of the P-wave velocity to the S-wave velocity is greater than 1.8 — two conditions that are satisfied in most naturally fractured reservoirs. The inversion then uses the fracture strike, the crack aspect ratio, and the ratio of the P-wave velocity to the S-wave velocity to invert the fracture porosity from the anisotropic AVO gradient after inferring the fluid type from the sign of the anisotropic AVO gradient. When I applied this method to a seismic line from the oil-saturated zone of the fractured Austin Chalk of southeast Texas, I found that the inversion gave a median fracture porosity of 0.21%, which is within the fracture-porosity range commonly measured in cores from the Austin Chalk.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. D669-D677 ◽  
Author(s):  
Long Huang ◽  
Robert R. Stewart ◽  
Nikolay Dyaur ◽  
Jose Baez-Franceschi

3D printing techniques (additive manufacturing) using different materials and structures provide opportunities to understand porous or fractured materials and fluid effects on their elastic properties. We used a 3D printer (Stratasys Dimension SST 768) to print one “solid” cube model and another with penny-shaped inclusions. The 3D printing process builds materials, layer by layer, producing a slight “bedding” plane, somewhat similar to a sedimentary process. We used ultrasonic transducers (500 kHz) to measure the P- and S-wave velocities. The input printing material was thermoplastic with a density of [Formula: see text], P-wave velocity of [Formula: see text], and S-wave velocity of [Formula: see text]. The solid cube had a porosity of approximately 6% and a density of [Formula: see text]. Its P-wave velocity was [Formula: see text] in the bedding direction and [Formula: see text] normal to bedding. We observed S-wave splitting with fast and slow velocities of 879 and [Formula: see text], respectively. Quality factors for P- and S-waves were estimated using the spectral-ratio method with [Formula: see text] ranging from 15 to 17 and [Formula: see text] from 24 to 27. By introducing penny-shaped inclusions along the bedding direction in a 3D printed cube, we created a more porous volume with density of [Formula: see text] and porosity of 24%. The inclusions significantly decreased the P-wave velocity to 1706 and [Formula: see text] parallel and normal to the bedding plane. The fast and slow S-wave velocities also decreased to 812 and [Formula: see text]. A fluid substitution experiment, performed with water, increased (20%–46%) P-wave velocities and decreased (9%–10%) S-wave velocities. Theoretical predictions using Schoenberg’s linear-slip theory and Hudson’s penny-shaped theory were calculated, and we found that both theories matched the measurements closely (within 5%). The 3D printed material has interesting and definable properties and is an exciting new material for understanding wave propagation, rock properties, and fluid effects.


2021 ◽  
Author(s):  
Wanbo Xiao ◽  
Siqi Lu ◽  
Yanbin Wang

<p>Despite the popularity of the horizontal to vertical spectral ratio (HVSR) method in site effect studies, the origin of the H/V peaks has been controversial since this method was proposed. Many previous studies mainly focused on the explanation of the first or single peak of the H/V ratio, trying to distinguish between the two hypotheses — the S-wave resonance and ellipticity of Rayleigh wave. However, it is common both in numerical simulations and practical experiments that the H/V ratio exhibits multiple peaks, which is essential to explore the origin of the H/V peaks.</p><p>The cause for the multiple H/V peaks has not been clearly figured out, and once was simply explained as the result of multi subsurface layers. Therefore, we adopted numerical method to simulate the ambient noise in various layered half-space models and calculated the H/V ratio curves for further comparisons. The peak frequencies of the H/V curves accord well with the theoretical frequencies of S-wave resonance in two-layer models, whose frequencies only depend on the S wave velocity and the thickness of the subsurface layer. The same is true for models with varying model parameters. Besides, the theoretical formula of the S-wave resonance in multiple-layer models is proposed and then supported by numerical investigations as in the cases of two-layer models. We also extended the S-wave resonance to P-wave resonance and found that its theoretical frequencies fit well with the V/H peaks, which could be an evidence to support the S-wave resonance theory from a new perspective. By contrast, there are obvious differences between the higher orders of the H/V ratio peaks and the higher orders of Rayleigh wave ellipticity curves both in two-layer and multiple-layer models. The Rayleigh wave ellipticity curves are found to be sensitive to the Poisson’s ratio and the thickness of the subsurface layer, so the variation of the P wave velocity can affect the peak frequencies of the Rayleigh wave ellipticity curves while the H/V peaks show slight change. The Rayleigh wave ellipticity theory is thus proved to be inappropriate for the explanation of the multiple H/V peaks, while the possible effects of the Rayleigh wave on the fundamental H/V peak still cannot be excluded.</p><p>Based on the analyses above, we proposed a new evidence to support the claim that the peak frequencies of the H/V ratio curve, except the fundamental peaks, are caused by S-wave resonance. The relationship between the P-wave resonance and the V/H peaks may also find further application.</p>


2021 ◽  
Author(s):  
Sheng Chen ◽  
Qingcai Zeng ◽  
Xiujiao Wang ◽  
Qing Yang ◽  
Chunmeng Dai ◽  
...  

Abstract Practices of marine shale gas exploration and development in south China have proved that formation overpressure is the main controlling factor of shale gas enrichment and an indicator of good preservation condition. Accurate prediction of formation pressure before drilling is necessary for drilling safety and important for sweet spots predicting and horizontal wells deploying. However, the existing prediction methods of formation pore pressures all have defects, the prediction accuracy unsatisfactory for shale gas development. By means of rock mechanics analysis and related formulas, we derived a formula for calculating formation pore pressures. Through regional rock physical analysis, we determined and optimized the relevant parameters in the formula, and established a new formation pressure prediction model considering P-wave velocity, S-wave velocity and density. Based on regional exploration wells and 3D seismic data, we carried out pre-stack seismic inversion to obtain high-precision P-wave velocity, S-wave velocity and density data volumes. We utilized the new formation pressure prediction model to predict the pressure and the spatial distribution of overpressure sweet spots. Then, we applied the measured pressure data of three new wells to verify the predicted formation pressure by seismic data. The result shows that the new method has a higher accuracy. This method is qualified for safe drilling and prediction of overpressure sweet spots for shale gas development, so it is worthy of promotion.


Geophysics ◽  
1987 ◽  
Vol 52 (9) ◽  
pp. 1211-1228 ◽  
Author(s):  
Peter Mora

The treatment of multioffset seismic data as an acoustic wave field is becoming increasingly disturbing to many geophysicists who see a multitude of wave phenomena, such as amplitude‐offset variations and shearwave events, which can only be explained by using the more correct elastic wave equation. Not only are such phenomena ignored by acoustic theory, but they are also treated as undesirable noise when they should be used to provide extra information, such as S‐wave velocity, about the subsurface. The problems of using the conventional acoustic wave equation approach can be eliminated via an elastic approach. In this paper, equations have been derived to perform an inversion for P‐wave velocity, S‐wave velocity, and density as well as the P‐wave impedance, S‐wave impedance, and density. These are better resolved than the Lamé parameters. The inversion is based on nonlinear least squares and proceeds by iteratively updating the earth parameters until a good fit is achieved between the observed data and the modeled data corresponding to these earth parameters. The iterations are based on the preconditioned conjugate gradient algorithm. The fundamental requirement of such a least‐squares algorithm is the gradient direction which tells how to update the model parameters. The gradient direction can be derived directly from the wave equation and it may be computed by several wave propagations. Although in principle any scheme could be chosen to perform the wave propagations, the elastic finite‐ difference method is used because it directly simulates the elastic wave equation and can handle complex, and thus realistic, distributions of elastic parameters. This method of inversion is costly since it is similar to an iterative prestack shot‐profile migration. However, it has greater power than any migration since it solves for the P‐wave velocity, S‐wave velocity, and density and can handle very general situations including transmission problems. Three main weaknesses of this technique are that it requires fairly accurate a priori knowledge of the low‐ wavenumber velocity model, it assumes Gaussian model statistics, and it is very computer‐intensive. All these problems seem surmountable. The low‐wavenumber information can be obtained either by a prior tomographic step, by the conventional normal‐moveout method, by a priori knowledge and empirical relationships, or by adding an additional inversion step for low wavenumbers to each iteration. The Gaussian statistics can be altered by preconditioning the gradient direction, perhaps to make the solution blocky in appearance like well logs, or by using large model variances in the inversion to reduce the effect of the Gaussian model constraints. Moreover, with some improvements to the algorithm and more parallel computers, it is hoped the technique will soon become routinely feasible.


Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1446-1454 ◽  
Author(s):  
Side Jin ◽  
G. Cambois ◽  
C. Vuillermoz

S-wave velocity and density information is crucial for hydrocarbon detection, because they help in the discrimination of pore filling fluids. Unfortunately, these two parameters cannot be accurately resolved from conventional P-wave marine data. Recent developments in ocean‐bottom seismic (OBS) technology make it possible to acquire high quality S-wave data in marine environments. The use of (S)-waves for amplitude variation with offset (AVO) analysis can give better estimates of S-wave velocity and density contrasts. Like P-wave AVO, S-wave AVO is sensitive to various types of noise. We investigate numerically and analytically the sensitivity of AVO inversion to random noise and errors in angles of incidence. Synthetic examples show that random noise and angle errors can strongly bias the parameter estimation. The use of singular value decomposition offers a simple stabilization scheme to solve for the elastic parameters. The AVO inversion is applied to an OBS data set from the North Sea. Special prestack processing techniques are required for the success of S-wave AVO inversion. The derived S-wave velocity and density contrasts help in detecting the fluid contacts and delineating the extent of the reservoir sand.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qing Dong ◽  
Zheng-hua Zhou ◽  
Su Jie ◽  
Bing Hao ◽  
Yuan-dong Li

At engineering practice, the theoretical basis for the cross-over method, used to obtain shear wave arrival time in the downhole method of the wave velocity test by surface forward and backward strike, is that the polarity of P-wave keeps the same, while the polarity of S-wave transforms when the direction of strike inverted. However, the characteristics of signals recorded in tests are often found to conflict with this theoretical basis for the cross-over method, namely, the polarity of the P-wave also transforms under the action of surface forward and backward strike. Therefore, 3D finite element numerical simulations were conducted to study the validity of the theoretical basis for the cross-over method. The results show that both shear and compression waves are observed to be in 180° phase difference between horizontal signal traces, consistent with the direction of excitation generated by reversed impulse. Furthermore, numerical simulation results prove to be reliable by the analytic solution; it shows that the theoretical basis for the cross-over method applied to the downhole wave velocity test is improper. In meanwhile, numerical simulations reveal the factors (inclining excitation, geophone deflection, inclination, and background noise) that may cause the polarity of the P-wave not to reverse under surface forward and backward strike. Then, as to reduce the influence factors, we propose a method for the downhole wave velocity test under surface strike, the time difference of arrival is based between source peak and response peak, and numerical simulation results show that the S-wave velocity by this method is close to the theoretical S-wave velocity of soil.


Sign in / Sign up

Export Citation Format

Share Document