Geophysical pore type inversion in carbonate reservoir: integration of cores, well-logs, and seismic data (Yadana field, offshore Myanmar)

Geophysics ◽  
2021 ◽  
pp. 1-69
Author(s):  
Thomas Teillet ◽  
François Fournier ◽  
Luanxiao Zhao ◽  
Jean Borgomano ◽  
Fei Hong

Detection of pore types and diagenetic features from seismic data is a major challenge for the evaluation of carbonate reservoirs in the subsurface. Based on a detailed petrographical and petrophysical analysis of carbonate rock using optical and scanning electron microscopy, mercury-injection measurements, digital image analysis, and well logs, we have determined the potential of the geophysical pore type (αP) inversion a rock physics inversion scheme based on the differential effective medium theory – to quantitatively and qualitatively characterize the pore type distribution from acoustic data in the Yadana carbonate gas field (Early Miocene, offshore Myanmar). The geophysical pore type (αP) is revealed to be an upscalable parameter, whose depositional/diagenetic interpretation may be performed at well log and at seismic scales. We apply the inversion method on a 3D seismic data to map the reservoir-scale distribution and highlight the occurrence of laterally extended (100–1000 m) subseismic- to seismic-scale (thickness >5 m) geologic bodies. From this approach, two main reservoir geobodies are discriminated and interpreted in terms of depositional and diagenetic fabrics: (1) highly microporous, decameter-scale reservoir units (approximately 80% of the reservoir), mainly consisting of foraminiferal, red algae floatstone to rudstone with vuggy, moldic porosity, and characterized by moderate to high αP (0.11–0.20) and (2) thin, stratiform, cemented scleractinian floatstone/brecciated units (5–10 m; approximately 20% of the reservoir) with low microporosity and macroporosity and exhibiting low αP values (<0.11).

1999 ◽  
Vol 2 (04) ◽  
pp. 334-340 ◽  
Author(s):  
Philippe Lamy ◽  
P.A. Swaby ◽  
P.S. Rowbotham ◽  
Olivier Dubrule ◽  
A. Haas

Summary The methodology presented in this paper incorporates seismic data, geological knowledge and well logs to produce models of reservoir parameters and uncertainties associated with them. A three-dimensional (3D) seismic dataset is inverted within a geological and stratigraphic model using the geostatistical inversion technique. Several reservoir-scale acoustic impedance blocks are obtained and quantification of uncertainty is determined by computing statistics on these 3D blocks. Combining these statistics with the kriging of the reservoir parameter well logs allows the transformation of impedances into reservoir parameters. This combination is similar to performing a collocated cokriging of the acoustic impedances. Introduction Our geostatistical inversion approach is used to invert seismic traces within a geological and stratigraphic model. At each seismic trace location, a large number of acoustic impedance (AI) traces are generated by conditional simulation, and a local objective function is minimized to find the trace that best fits the actual seismic trace. Several three-dimensional (3D) AI realizations are obtained, all of which are constrained by both the well logs and seismic data. Statistics are then computed in each stratigraphic cell of the 3D results to quantify the nonuniqueness of the solution and to summarize the information provided by individual realizations. Finally, AI are transformed into other reservoir parameters such as Vshale through a statistical petrophysical relationship. This transformation is used to map Vshale between wells, by combining information derived from Vshale logs with information derived from AI blocks. The final block(s) can then be mapped from the time to the depth domain and used for building the flow simulation models or for defining reservoir characterization maps (e.g., net to gross, hydrocarbon pore volume). We illustrate the geostatistical inversion method with results from an actual case study. The construction of the a-priori model in time, the inversion, and the final reservoir parameters in depth are described. These results show the benefit of a multidisciplinary approach, and illustrate how the geostatistical inversion method provides clear quantification of uncertainties affecting the modeling of reservoir properties between wells. Methodology The Geostatistical Inversion Approach. This methodology was introduced by Bortoli et al.1 and Haas and Dubrule.2 It is also discussed in Dubrule et al.3 and Rowbotham et al.4 Its application on a synthetic case is described in Dubrule et al.5 A brief review of the method will be presented here, emphasizing how seismic data and well logs are incorporated into the inversion process. The first step is to build a geological model of the reservoir in seismic time. Surfaces are derived from sets of picks defining the interpreted seismic. These surfaces are important sincethey delineate the main layers of the reservoir and, as we will see below, the statistical model associated with these layers, andthey control the 3D stratigraphic grid construction. The structure of this grid (onlap, eroded, or proportional) depends on the geological context. The maximum vertical discretization may be higher than that of the seismic, typically from 1 to 4 milliseconds. The horizontal discretization is equal to the number of seismic traces to invert in each direction (one trace per cell in map view). Raw AI logs at the wells have to be located within this stratigraphic grid since they will be used as conditioning data during the inversion process. It is essential that well logs should be properly calibrated with the seismic. This implies that a representative seismic wavelet has been matched to the wells, by comparing the convolved reflectivity well log response with the seismic response at the same location. This issue is described more fully in Rowbotham et al.4 Geostatistical parameters are determined by using both the wells and seismic data. Lateral variograms are computed from the seismic mapped into the stratigraphic grid. Well logs are used to both give an a priori model (AI mean and standard deviation) per stratum and to compute vertical variograms. The geostatistical inversion process can then be started. A random path is followed by the simulation procedure, and at each randomly drawn trace location AI trace values can be generated by sequential Gaussian simulation (SGS). A large number of AI traces are generated at the same location and the corresponding reflectivities are calculated. After convolution with the wavelet, the AI trace that leads to the best fit with the actual seismic is kept and merged with the wells and the previously simulated AI traces. The 3D block is therefore filled sequentially, trace after trace (see Fig. 1). It is possible to ignore the seismic data in the simulation process by generating only one trace at any (X, Y) location and automatically keeping it as "the best one." In this case, realizations are only constrained by the wells and the geostatistical model (a-priori parameters and variograms).


Geophysics ◽  
2010 ◽  
Vol 75 (3) ◽  
pp. O21-O37 ◽  
Author(s):  
Dario Grana ◽  
Ernesto Della Rossa

A joint estimation of petrophysical properties is proposed that combines statistical rock physics and Bayesian seismic inversion. Because elastic attributes are correlated with petrophysical variables (effective porosity, clay content, and water saturation) and this physical link is associated with uncertainties, the petrophysical-properties estimation from seismic data can be seen as a Bayesian inversion problem. The purpose of this work was to develop a strategy for estimating the probability distributions of petrophysical parameters and litho-fluid classes from seismics. Estimation of reservoir properties and the associated uncertainty was performed in three steps: linearized seismic inversion to estimate the probabilities of elastic parameters, probabilistic upscaling to include the scale-changes effect, and petrophysical inversion to estimate the probabilities of petrophysical variables andlitho-fluid classes. Rock-physics equations provide the linkbetween reservoir properties and velocities, and linearized seismic modeling connects velocities and density to seismic amplitude. A full Bayesian approach was adopted to propagate uncertainty from seismics to petrophysics in an integrated framework that takes into account different sources of uncertainty: heterogeneity of the real data, approximation of physical models, measurement errors, and scale changes. The method has been tested, as a feasibility step, on real well data and synthetic seismic data to show reliable propagation of the uncertainty through the three different steps and to compare two statistical approaches: parametric and nonparametric. Application to a real reservoir study (including data from two wells and partially stacked seismic volumes) has provided as a main result the probability densities of petrophysical properties and litho-fluid classes. It demonstrated the applicability of the proposed inversion method.


2011 ◽  
Vol 51 (2) ◽  
pp. 704
Author(s):  
Ebrahim Hassan Zadeh ◽  
Reza Rezaee ◽  
Michel Kemper

Although shales constitute about 75% of most sedimentary basins, the studies dealing with their seismic response are relatively few, particularly for the organic rich shale gas. Mapping distribution of shale gas and identifying their maturation level and organic carbon richness is critically important for unconventional gas field exploration and development. This study analyses the sensitivity of acoustic and elastic parameters of shales to variations in pore fluid content. Based on the effective medium theory a rock physics model has been made by inversion of the shale stiffness tensor from sonic, density, porosity and clay content logs. Due to the lack of a generally agreed upon fluid substitution model for shale, a statistical approach to Gassmann’s Model using effective porosity in the near boundary conditions, has been developed to account for shale. Fluid substituted logs—for a variety of maturation levels—and gas saturations were generated and used to make the layered earth models. AVO and seismic forward modelling were performed using the rock physics modelled and the fluid substituted logs on layered models. As part of seismic forward modelling, simultaneous inversion is performed for each model to generate P-impedance, S-impedance and density volumes. The sensitivity of the models were analysed by histogram, cross plotting, cross section highlighting, and body checking techniques. This study showed a dramatic hydrocarbon content effect—specifically gas—in the seismic response of shales.


2021 ◽  
Author(s):  
Pavlo Kuzmenko ◽  
Rustem Valiakhmetov ◽  
Francesco Gerecitano ◽  
Viktor Maliar ◽  
Grigori Kashuba ◽  
...  

Abstract The seismic data have historically been utilized to perform structural interpretation of the geological subsurface. Modern approaches of Quantitative Interpretation are intended to extract geologically valuable information from the seismic data. This work demonstrates how rock physics enables optimal prediction of reservoir properties from seismic derived attributes. Using a seismic-driven approach with incorporated prior geological knowledge into a probabilistic subsurface model allowed capturing uncertainty and quantifying the risk for targeting new wells in the unexplored areas. Elastic properties estimated from the acquired seismic data are influenced by the depositional environment, fluid content, and local geological trends. By applying the rock physics model, we were able to predict the elastic properties of a potential lithology away from the well control points in the subsurface whether or not it has been penetrated. Seismic amplitude variation with incident angle (AVO) and azimuth (AVAZ) jointly with rock-derived petrophysical interpretations were used for stochastical modeling to capture the reservoir distribution over the deep Visean formation. The seismic inversion was calibrated by available well log data and by traditional structural interpretation. Seismic elastic inversion results in a deep Lower Carboniferous target in the central part of the DDB are described. The fluid has minimal effect on the density and Vp. Well logs with cross-dipole acoustics are used together with wide-azimuth seismic data, processed with amplitude control. It is determined that seismic anisotropy increases in carbonate deposits. The result covers a set of lithoclasses and related probabilities: clay minerals, tight sandstones, porous sandstones, and carbonates. We analyzed the influence of maximum angles determination for elastic inversion that varied from 32.5 to 38.5 degrees. The greatest influence of the far angles selection is on the density. AI does not change significantly. Probably the 38,5 degrees provides a superior response above the carbonates. It does not seem to damage the overall AVA behavior, which result in a good density outcome, as higher angles of incidence are included. It gives a better tie to the wells for the high density layers over the interval of interest. Sand probability cube must always considered in the interpretation of the lithological classification that in many cases may be misleading (i.e. when sand and shale probabilities are very close to each other, because of small changes in elastic parameters). The authors provide an integrated holistic approach for quantitative interpretation, subsurface modeling, uncertainty evaluation, and characterization of reservoir distribution using pre-existing well logs and recently acquired seismic data. This paper underpins the previous efforts and encourages the work yet to be fulfilled on this subject. We will describe how quantitative interpretation was used for describing the reservoir, highlight values and uncertainties, and point a way forward for further improvement of the process for effective subsurface modeling.


2014 ◽  
Vol 2 (4) ◽  
pp. T193-T204
Author(s):  
Jiqiang Ma ◽  
Jianhua Geng ◽  
Tonglou Guo

The prediction of seismic reservoirs in marine carbonate areas in the Sichuan Basin, southwestern China, is very challenging because the target zone is deeply buried (more than 6 km), with multiphase tectonic movements, complex diagenesis, and low porosity, and the incident angle of the seismic data is finite. We developed reliable hydrocarbon indicators of a marine carbonate deposit based on prestack elastic impedance (EI) and well observations. Although the hydrocarbon indicators can be calculated from elastic parameters, the inversion for EI-driven elastic attributes is usually unstable. To constrain the inversion process, we discovered a new strategy to recover the elastic properties from EIs within a Bayesian framework (called Bayesian elastic parameter inversion from elastic impedance). We applied the strategy to a carbonate reef identified at the center of a study line based on the geologic context and the seismic reflection patterns. We then used rock-physics analyses to classify the lithologies and the reservoir at a well location. Rock-physics modeling quantified the hydrocarbon sensitivity of the elastic attributes. Fluid substitution was used to investigate the effects of pore fluids on the elastic properties. A comparison of two synthetic amplitude-versus-angle responses (for gas and brine saturation) with real seismic data showed that the reservoir was gas charged. Using well-based crossplot analyses, reliable direct hydrocarbon indicators can be constructed for a deeply buried gas reservoir and were effective for interpretation in an area of marine carbonates in the Sichuan Basin.


Geophysics ◽  
2010 ◽  
Vol 75 (3) ◽  
pp. R47-R59 ◽  
Author(s):  
R. P. Srivastava ◽  
M. K. Sen

In general, inversion algorithms rely on good starting models to produce realistic earth models. A new method, based on a fractional Gaussian distribution derived from the statistical parameters of available well logs to generate realistic initial models, uses fractal theory to generate these models. When such fractal-based initial models estimate P- and S-impedance profiles in a prestack stochastic inversion of seismic angle gathers, very fast simulated annealing — a global optimization method — finds the minimum of an objective function that minimizes data misfit and honors the statistics derived from well logs. The new stochastic inversion method addresses frequencies missing because of band limitation of the wavelet; it combines the low- and high-frequency variation from well logs with seismic data. This method has been implemented successfully using real prestack seismic data, and results have been compared with deterministic inversion. Models derived by a deterministic inversion are devoid of high-frequency variations in the well log; however, models derived by stochastic inversion reveal high-frequency variations that are consistent with seismic and well-log data.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. N51-N65 ◽  
Author(s):  
Vaughn Ball ◽  
Luis Tenorio ◽  
Christian Schiøtt ◽  
Michelle Thomas ◽  
J. P. Blangy

A three-term (3T) amplitude-variation-with-offset projection is a weighted sum of three elastic reflectivities. Parameterization of the weighting coefficients requires two angle parameters, which we denote by the pair [Formula: see text]. Visualization of this pair is accomplished using a globe-like cartographic representation, in which longitude is [Formula: see text], and latitude is [Formula: see text]. Although the formal extension of existing two-term (2T) projection methods to 3T methods is trivial, practical implementation requires a more comprehensive inversion framework than is required in 2T projections. We distinguish between projections of true elastic reflectivities computed from well logs and reflectivities estimated from seismic data. When elastic reflectivities are computed from well logs, their projection relationships are straightforward, and they are given in a form that depends only on elastic properties. In contrast, projection relationships between reflectivities estimated from seismic may also depend on the maximum angle of incidence and the specific reflectivity inversion method used. Such complications related to projections of seismic-estimated elastic reflectivities are systematized in a 3T projection framework by choosing an unbiased reflectivity triplet as the projection basis. Other biased inversion estimates are then given exactly as 3T projections of the unbiased basis. The 3T projections of elastic reflectivities are connected to Bayesian inversion of other subsurface properties through the statistical notion of Bayesian sufficiency. The triplet of basis reflectivities is computed so that it is Bayes sufficient for all rock properties in the hierarchical seismic rock-physics model; that is, the projection basis contains all information about rock properties that is contained in the original seismic.


Geophysics ◽  
1993 ◽  
Vol 58 (1) ◽  
pp. 177-179 ◽  
Author(s):  
John A. Scales

In a series of papers Benjamin White, Ping Sheng, George Papanicolaou and others have described the application of localization theory to the study of elastic wave propagation in randomly stratified one‐dimensional (1-D) media. They describe methods for computing the localization parameters and apply the results to sonic well‐log data. In this note, I will show that, at least in the seismic band, the results of their calculations disagree with effective medium theory. This disagreement may to be due to the lack of low‐frequency information in exploration seismic data.


Sign in / Sign up

Export Citation Format

Share Document