The Research and Application of Wave Equation Forward Modeling Technique in Thick Loess area Seismic Exploration

Author(s):  
Yuan Guangyin ◽  
Zhang Xiaobin ◽  
Chen Jiangli ◽  
Luo Weidong ◽  
Li Bing
2021 ◽  
Vol 11 (7) ◽  
pp. 3010
Author(s):  
Hao Liu ◽  
Xuewei Liu

The lack of an initial condition is one of the major challenges in full-wave-equation depth extrapolation. This initial condition is the vertical partial derivative of the surface wavefield and cannot be provided by the conventional seismic acquisition system. The traditional solution is to use the wavefield value of the surface to calculate the vertical partial derivative by assuming that the surface velocity is constant. However, for seismic exploration on land, the surface velocity is often not uniform. To solve this problem, we propose a new method for calculating the vertical partial derivative from the surface wavefield without making any assumptions about the surface conditions. Based on the calculated derivative, we implemented a depth-extrapolation-based full-wave-equation migration from topography using the direct downward continuation. We tested the imaging performance of our proposed method with several experiments. The results of the Marmousi model experiment show that our proposed method is superior to the conventional reverse time migration (RTM) algorithm in terms of imaging accuracy and amplitude-preserving performance at medium and deep depths. In the Canadian Foothills model experiment, we proved that our method can still accurately image complex structures and maintain amplitude under topographic scenario.


Geophysics ◽  
1988 ◽  
Vol 53 (12) ◽  
pp. 1512-1519 ◽  
Author(s):  
James N. Lange ◽  
H. A. Almoghrabi

A forward modeling technique using Ricker wavelets demonstrates the need for a multiparameter approach in lithology determination using reflections from thin layers. The combination of time‐ and frequency‐domain analyses leads to a set of algorithms which define pore fluid and lithology from wavelet characteristics. The dispersive behavior of the thin layer varies considerably with the environment surrounding the layer, resulting in characteristic frequency‐domain behavior. With a limited prior knowledge of the formation environment, the pore fluid type can be determined using mode‐converted waves in the frequency domain.


2015 ◽  
Vol 12 (6) ◽  
pp. 988-995
Author(s):  
Yitao Pu ◽  
Xingyao Yin ◽  
Danping Cao ◽  
Chong Zhang

2011 ◽  
Vol 54 (1) ◽  
pp. 84-92
Author(s):  
Run-Qiu WANG ◽  
Lan-Lan LI ◽  
Hui-Jian LI ◽  
Tao-Ran LIU

Geophysics ◽  
1984 ◽  
Vol 49 (2) ◽  
pp. 132-141 ◽  
Author(s):  
Edip Baysal ◽  
Dan D. Kosloff ◽  
J. W. C. Sherwood

In seismic modeling and in migration it is often desirable to use a wave equation (with varying velocity but constant density) which does not produce interlayer reverberations. The conventional approach has been to use a one‐way wave equation which allows energy to propagate in one dominant direction only, typically this direction being either upward or downward (Claerbout, 1972). We introduce a two‐way wave equation which gives highly reduced reflection coefficients for transmission across material boundaries. For homogeneous regions of space, however, this wave equation becomes identical to the full acoustic wave equation. Possible applications of this wave equation for forward modeling and for migration are illustrated with simple models.


2021 ◽  
Vol 72 ◽  
pp. 113-122
Author(s):  
Amir Mustaqim Majdi ◽  
◽  
Seyed Yaser Moussavi Alashloo ◽  
Nik Nur Anis Amalina Nik Mohd Hassan ◽  
Abdul Rahim Md Arshad ◽  
...  

Traveltime is one of the propagating wave’s components. As the wave propagates further, the traveltime increases. It can be computed by solving wave equation of the ray path or the eikonal wave equation. Accurate method of computing traveltimes will give a significant impact on enhancing the output of seismic forward modeling and migration. In seismic forward modeling, computation of the wave’s traveltime locally by ray tracing method leads to low resolution of the resulting seismic image, especially when the subsurface is having a complex geology. However, computing the wave’s traveltime with a gridding scheme by finite difference methods able to overcomes the problem. This paper aims to discuss the ability of ray tracing and fast marching method of finite difference in obtaining a seismic image that have more similarity with its subsurface model. We illustrated the results of the traveltime computation by both methods in form of ray path projection and wavefront. We employed these methods in forward modeling and compared both resulting seismic images. Seismic migration is executed as a part of quality control (QC). We used a synthetic velocity model which based on a part of Malay Basin geology structure. Our findings shows that the seismic images produced by the application of fast marching finite difference method has better resolution than ray tracing method especially on deeper part of subsurface model.


Sign in / Sign up

Export Citation Format

Share Document