Quality control and risk assessment of seismic profiles using area-depth-strain analysis

2015 ◽  
Vol 3 (4) ◽  
pp. SAA1-SAA15 ◽  
Author(s):  
Richard H. Groshong

Area-depth-strain (ADS) analysis is a method for quantifying the structural style, balance, boundary displacement, detachment locations, and subseismic strain from a seismic profile, information that is particularly useful for quality control and risk analysis. The method is based on measurements of excess area, width, depth, and bed length of multiple horizons in a structure. A balanced structure is indicated by a well-defined line or lines on an area-depth graph. The structural uncertainty or risk of the interpretation is quantified using the fit of the data to the least-squares line(s), the match between the ADS detachment values and the interpreted geometry, and the magnitudes of the calculated strains. The method also clearly separates syntectonic (growth) units from nontectonic (pregrowth and no-growth) units. Different area-depth graph styles represent (1) classic detachment folds, fault-propagation folds, and ramp anticlines; (2) buckle-style detachment folds; and (3) fault-bend folds. The focus here is on the first two. Numerical models of the detachment fold styles show the similarities and differences between their geometries and ADS interpretations. Both styles are evaluated with seismic profiles across oilfield-scale structures. The Alpha/Bobo field, Nigeria, is a classic detachment fold, and an Angolan anticline is of the buckle style. Profiles across the Alpha/Bobo field before and after the first well was drilled demonstrate the improvement in the ADS interpretation of the lower detachment location and the reduction of layer-parallel strains in the revised profile. The Alpha/Bobo field and the Angola fold illustrate the distinction between growth and no-growth intervals and the interpretation of growth strata. Both fields show the use of predicted versus observed ADS results to suggest possible improvements to the interpretation.

2002 ◽  
Vol 139 (3) ◽  
pp. 331-341 ◽  
Author(s):  
P. ALFARO ◽  
J. M. ANDREU ◽  
J. M. ANDREU ◽  
A. ESTÉVEZ ◽  
J. M. SORIA ◽  
...  

The blind reverse Bajo Segura Fault is located at the eastern extreme of the Trans-Alboran shear zone (Betic Cordillera, southeast Iberian Peninsula). The surface expression of recent activity of this blind ENE–WSW fault is represented by coseismic surface anticlines and growth synclines on both sides of the anticlines. In the synclines, the deformation of the most recent Quaternary materials is obscured by a sedimentary unit more than 30 m thick which was deposited during the later part of the Late Pleistocene and the Holocene. The present study reports three high-resolution seismic profiles made in the northern growth syncline, which was the one developed most by the Bajo Segura Fault. In these seismic profiles we recognize the boundary between pre-growth strata and growth strata. This marker, Early Pliocene in age, dates the start of the activity of this blind reverse fault. The geometry observed in the seismic profiles of the syntectonic strata, dating from the Late Pliocene and Quaternary, indicates a limb rotation folding mechanism. On seismic profile 2, the complex geometry of the Benejúzar anticline forelimb can be attributed to several splay faults close to the surface of Bajo Segura Fault.


1995 ◽  
Vol 38 (5-6) ◽  
Author(s):  
G. Croci ◽  
D. D'Ayala ◽  
R. Liburdi

The present work aimed to outline the need to investigate different fields of research to interpret the structural behaviour of a monument as complex as the Colosseum. It is shown how defining the numerical models first. then refining them, followed by interpretation of results. is strictly linked with the inforination gathered from historical records and observation of the ~nonumenta s it is today. The study is confined to the area of the Valadier abutment. analysing its state and its seismic behaviour before and after the XIX century restoration using different ilumerical tools, from the elastic modal analysis to the non linear step by step time history direct integration. The procedure comparati\ely evaluates the reliability in the interpretation of the results and identifies future lines or research.


Author(s):  
Oladotun A. Ojo ◽  
Peter A. Oluwafisoye ◽  
Charles O. Chime

The sensitivity of radiographic films is an important factor to the clarity and accuracy of X-ray exposure to patients during treatment or diagnostic periods. It is therefore important to do a thorough analysis of the sensitivity of the radiographic film before and after exposure to enhance the Quality Assurance (QA) and the Quality Control (QC), of the exposure procedures. The optical densities (OD) of each film was measured, with a densitometer model MA 5336, made by GAMMEX. These values were then converted to the absorbed dose (X mGy), which is the amount of dose absorbed by each patient. The optical density versus the dose curve, followed the expected pattern, showing a good prediction from the General model, that the films employed in the exposures were of good quality and standard. Hence the optical density versus dose sensitometric curves depicts the outcome of the various films sensitivity after an exposure to the X-ray radiation through the patients.


2021 ◽  
pp. jgs2020-085 ◽  
Author(s):  
Laura Burrel ◽  
Antonio Teixell

Triassic Keuper evaporites have long been recognized as the main detachment level for thrusting in the Pyrenean fold–thrust belts. The deformed Late Cretaceous–Eocene foreland basin of the Southern Pyrenees has structures and stratal geometries that can be interpreted as related to salt tectonics (e.g. unconformities, rapid thickness variations, long-lived growth fans and overturned flaps), although they have been overprinted by shortening and thrusting. Based on field observations and published maps, we build new structural cross-sections reinterpreting two classic transects of the Southern Pyrenees (Noguera Ribagorçana and Noguera Pallaresa river transects). The sequential restoration of the sections explores the variations in structural style, addressing the role of halokinesis in the tectonic and sedimentary development. In the Serres Marginals area, we propose that salt pillows and diapirs started developing locally during the Mesozoic pre-orogenic episode, evolving into a system of salt ridges and intervening synclines filled with early synorogenic sediments. Rapid amplification of folds recorded by widespread latest Cretaceous–Paleocene growth strata is taken as marking the onset of contractional folding in the area. During Pyrenean compression, folding mechanisms transitioned from dominantly halokinetic to a combination of buckling and differential sedimentary loading. Squeezing of salt diapirs and thrust welding occurred as salt ridges were unroofed. We provide new field observations that lead to a reinterpretation of the regional structural development and contribute to the debate about the role of salt tectonics in the Pyrenees.Supplementary material: Table S1, giving the thickness of the main stratigraphic units, is available at https://doi.org/10.6084/m9.figshare.c.5287737


2021 ◽  
Author(s):  
Wajdi Belkhiria ◽  
Haifa Boussiga ◽  
Imen Hamdi Nasr ◽  
Adnen Amiri ◽  
Mohamed Hédi Inoubli

<p>The Sahel basin in eastern Tunisia has been subject for hydrocarbon exploration since the early fifties. Despite the presence of a working petroleum system in the area, most of the drilled wells were dry or encountered oil shows that failed to give commercial flow rates. A better understanding of the tectono-sedimentary evolution of the Sahel basin is of great importance for future hydrocarbon prospectivity. In this contribution, we present integration of 2D seismic reflection profiles, exploration wells and new acquired gravity data. These subsurface data reveal that the Sahel basin developed as a passive margin during Jurassic-Early Cretaceous times and was later inverted during the Cenozoic Alpine orogeny. The occurrence of Triassic age evaporites and shales deposited during the Pangea breakup played a fundamental role in the structural style and tectono-sedimentary evolution of the study area. Seismic and gravity data revealed jointly important deep-seated extensional faults, almost along E-W and few along NNE–SSW and NW-SE directions, delimiting horsts and grabens structures. These syn-rift extensional faults controlled deposition, facies distribution and thicknesses of the Jurassic and Early cretaceous series. Most of these inherited deep-seated normal and transform faults are ornamented by different types of salt-related structures. The first phase of salt rising was initiated mainly along these syn-extensional faults in the Late Jurassic forming salt domes and continued into the Early and Late Cretaceous leading to salt-related diapir structures. During this period, the salt diapirism was accompanied by the development of salt withdrawal minibasins, characterized important growth strata due the differential subsidence. These areas represent important immediate kitchen areas to the salt-related structures. The later Late Cretaceous - Cenozoic shortening phases induced preferential rejuvenation of the diapiric structures and led to the inversion of former graben/half-graben structures and ultimately to vertical salt welds along salt ridges. These salt structures represent key elements that remains largely undrilled in the Sahel basin. Our results improve the understanding of salt growth in eastern Tunisia and consequently greatly impact the hydrocarbon prospectivity in the area.</p>


Author(s):  
Chike Okoloekwe ◽  
Muntaseer Kainat ◽  
Doug Langer ◽  
Sherif Hassanien ◽  
J.J. Roger Cheng ◽  
...  

Oil and gas pipelines traverse long distances and are often subjected to mechanical forces that result in permanent distortion of its geometric cross section in the form of dents. In order to prioritize the repair of dents in pipelines, dents need to be ranked in order of severity. Numerical modeling via finite element analysis (FEA) to rank the dents based on the accumulated localized strain is one approach that is considered to be computationally demanding. In order to reduce the computation time with minimal effect to the completeness of the strain analysis, an approach to the analytical evaluation of strains in dented pipes based on the geometry of the deformed pipe is presented in this study. This procedure employs the use of B-spline functions, which are equipped with second-order continuity to generate displacement functions, which define the surface of the dent. The strains associated with the deformation can be determined by evaluating the derivatives of the displacement functions. The proposed technique will allow pipeline operators to rapidly determine the severity of a dent with flexibility in the choice of strain measure. The strain distribution predicted using the mathematical model proposed is benchmarked against the strains predicted by nonlinear FEA. A good correlation is observed in the strain contours predicted by the analytical and numerical models in terms of magnitude and location. A direct implication of the observed agreement is the possibility of performing concise strain analysis on dented pipes with algorithms relatively easy to implement and not as computationally demanding as FEA.


2019 ◽  
Vol 152 (Supplement_1) ◽  
pp. S88-S88
Author(s):  
Jose Jara Aguirre ◽  
Karl Ness ◽  
Alicia Algeciras-Schimnich

Abstract Introduction The CLSI EP15-A3 guideline “User Verification of Precision and Estimation of Bias” provides a simple experimental approach to estimate a method’s imprecision and bias. The objective is to determine if the laboratory precision performance of repeatability (SR) and within-laboratory imprecision (SWL) are in accordance to the manufacturer specification claims (MSCs). Objectives Evaluate the utility of the EP15-A3 protocol to verify method precision during a troubleshooting investigation and after major instrument maintenance, using a carcinoembryonic antigen (CEA) immunoassay as an example. Methods CEA was performed on the Beckman Coulter DxI (Beckman Coulter, Brea, CA). Quality control (QC) levels (L1: 2.89; L2: 21.10; L3: 39.10 ng/mL) (Bio-Rad Laboratories, Irvine, CA) were used. Each QC level was measured before and after instrument maintenance as follows: five replicates per run, one run per day, and during 5 days. Imprecision estimates (IEs) for SR (%CVR) and SWL (%CVWL) were calculated by one-way analysis of variance using Microsoft Excel Analyse-it software. Estimated imprecision was compared to MSC and desirable imprecision specifications based on biological variation (BV). Results A change in the analytical performance of CEA was detected by a decreased sigma-metric indicator. After a bias problem was ruled out, the observed %CVR for L1, L2, and L3 were 7.2%, 3.7%, and 4.8%, respectively. The %CVWL were 8.3%, 5.0%, and 5.5%, which exceeded the MSC of %CVWL~4.0% to 4.5%. After a laboratory investigation, major instrument maintenance was performed by the manufacturer. The %CVR and %CVWL estimates for L1, L2, and L3 after maintenance were 3.2%, 3.8%, 3.5% and 3.9%, 4.2%, 4.0%, respectively. After maintenance, the CEA performance was consistent with the MSC for each of the levels analyzed and within the BV impression goal of %CV ≤6.4. Conclusion CLSI EP15-A3 guideline is an alternative troubleshooting tool that can be used to investigate and verify method precision performance before and after significant instrument maintenance.


2019 ◽  
Vol 11 (15) ◽  
pp. 4195 ◽  
Author(s):  
Li ◽  
Shan ◽  
Zhang ◽  
Li

A structural progressive collapse is usually a local failure, in which the damage is concentrated at beams that bridge the removal column and the column itself. In many cases, retrofitting the damaged structure is more economical and more sustainable than reconstructing the entire structure. A progressive collapse test of a 1/3 scale, four-bay by two-story reinforced concrete (RC) frame was conducted, after which the structure was retrofitted with carbon fiber reinforced polymer (CFRP) wraps and retested. The center column in the first story was removed and the frame was pushed down quasistatically under displacement control to investigate the progressive collapse performances of the retrofitted RC frame. The test results were represented systematically at different areas in terms of the resistance forces, crack developments, and local and global failure modes. Numerical models were built to verify the test frame before and after the retrofitting. A design method was proposed to retrofit an RC frame using CFRP wraps after a progressive collapse. The test frame was redesigned to improve the retrofitting and used as an example to demonstrate the rationality of the proposed retrofit design method. The results indicated that the proposed retrofitting technology rapidly restored the frame structure to its original capacity before the progressive collapse occurred, whilst consistently satisfying the priorities of being economical and sustainable.


Sign in / Sign up

Export Citation Format

Share Document