Amplitude variation with offset analysis of time-lapse land seismic data in a gas field, Thrace Basin, Turkey

2016 ◽  
Vol 4 (4) ◽  
pp. T543-T556
Author(s):  
Sait Baytok ◽  
Şeref Arzu Aktepe ◽  
Muhlis Ünaldi

The Thrace Basin that is located in northwestern Turkey contains sandstone and carbonate reservoirs of Eocene and Oligocene age. Production and exploration activities are still underway. Mapping undrained sweet spots from seismic data is currently a challenge, so time lapse (4D) seismic is used to reduce the risk for new production and development drilling. We have evaluated the normalization and amplitude variation with offset (AVO) analysis of 3D-4D land seismic data in a gas producing field from which baseline and monitor surveys were acquired in 2002 and 2011, respectively. Through AVO analysis, intercept (A) and gradient (B) analysis was conducted, and fluid factor (FF) attribute maps were generated for the assessment of the remaining potential areas. Synthetic gathers were created for simulation of the AVO response, drained and undrained stages and compared with the corresponding 4D seismic data. The drainage of gas from the reservoir interval is evident from the difference maps between 2002 and 2011 seismic data. Both data sets were processed using an amplitude friendly processing sequence. This parallel processing was followed a mild data conditioning and crossequalization for reliable 4D interpretation. The 4D seismic data, especially land data, has low repeatability and requires conditioning to reduce the 4D noise. The 4D noise can be described as nonrepeatable noise, and any difference outside the reservoir zone is not related to production. A so-called crossequalization was applied to the base and the monitor data to bring out similarities so that they cancel out when differences of seismic data and its attributes indicated only the production results over the reservoir zones. As the available 4D data crossequalization software was implemented for stack data only, we created angle band stacks and crossequalized each angle band stack from the base and the monitor data cubes. Five angle band stacks from the base and the monitor prestack data cubes 0°–55° (0°–15°, 15°–25°, 25°–35°, 35°–45°, and 45°–55°) were crossequalized individually. The crossequalized angle band stacks were used in AVO analysis and AVO inversion to generate pore fill identifiers such as FF to map possible undrained zones after 10 years of production.

2022 ◽  
Author(s):  
Lamees N. Abdulkareem ◽  

Amplitude variation with offset (AVO) analysis is an 1 efficient tool for hydrocarbon detection and identification of elastic rock properties and fluid types. It has been applied in the present study using reprocessed pre-stack 2D seismic data (1992, Caulerpa) from north-west of the Bonaparte Basin, Australia. The AVO response along the 2D pre-stack seismic data in the Laminaria High NW shelf of Australia was also investigated. Three hypotheses were suggested to investigate the AVO behaviour of the amplitude anomalies in which three different factors; fluid substitution, porosity and thickness (Wedge model) were tested. The AVO models with the synthetic gathers were analysed using log information to find which of these is the controlling parameter on the AVO analysis. AVO cross plots from the real pre-stack seismic data reveal AVO class IV (showing a negative intercept decreasing with offset). This result matches our modelled result of fluid substitution for the seismic synthetics. It is concluded that fluid substitution is the controlling parameter on the AVO analysis and therefore, the high amplitude anomaly on the seabed and the target horizon 9 is the result of changing the fluid content and the lithology along the target horizons. While changing the porosity has little effect on the amplitude variation with offset within the AVO cross plot. Finally, results from the wedge models show that a small change of thickness causes a change in the amplitude; however, this change in thickness gives a different AVO characteristic and a mismatch with the AVO result of the real 2D pre-stack seismic data. Therefore, a constant thin layer with changing fluids is more likely to be the cause of the high amplitude anomalies.


Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 700-711 ◽  
Author(s):  
Christopher P. Ross

The ability to crossplot attributes from a 3-D seismic volume permits a geophysicist to identify and high grade subsets of the 3-D volume that warrant detailed inspection. In the case of amplitude‐variation‐with‐offset (AVO) crossplotting, the seismic attributes are derived from CDP data. Crossplotting has become a fundamental process in AVO analysis, just as it is in petrophysical analysis. Comprehending the intricacies and selection of attributes is essential for successful AVO analysis and improved seismic interpretation. AVO crossplotting of modeled seismic data derived from well logs with the Biot‐Gassmann equations provides a basis for understanding fluid substitution effects on AVO attribute interactions when crossplotting. With these model‐based understandings, improved multi‐attribute interpretation processes can commence with AVO crossplotting of seismic volumes.


Author(s):  
A. Ogbamikhumi ◽  
T. Tralagba ◽  
E. E. Osagiede

Field ‘K’ is a mature field in the coastal swamp onshore Niger delta, which has been producing since 1960. As a huge producing field with some potential for further sustainable production, field monitoring is therefore important in the identification of areas of unproduced hydrocarbon. This can be achieved by comparing production data with the corresponding changes in acoustic impedance observed in the maps generated from base survey (initial 3D seismic) and monitor seismic survey (4D seismic) across the field. This will enable the 4D seismic data set to be used for mapping reservoir details such as advancing water front and un-swept zones. The availability of good quality onshore time-lapse seismic data for Field ‘K’ acquired in 1987 and 2002 provided the opportunity to evaluate the effect of changes in reservoir fluid saturations on time-lapse amplitudes. Rock physics modelling and fluid substitution studies on well logs were carried out, and acoustic impedance change in the reservoir was estimated to be in the range of 0.25% to about 8%. Changes in reservoir fluid saturations were confirmed with time-lapse amplitudes within the crest area of the reservoir structure where reservoir porosity is 0.25%. In this paper, we demonstrated the use of repeat Seismic to delineate swept zones and areas hit with water override in a producing onshore reservoir.


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. V201-V221 ◽  
Author(s):  
Mehdi Aharchaou ◽  
Erik Neumann

Broadband preprocessing has become widely used for marine towed-streamer seismic data. In the standard workflow, far-field source designature, receiver and source-side deghosting, and redatuming to mean sea level are applied in sequence, with amplitude compensation for background [Formula: see text] delayed until the imaging or postmigration stages. Thus, each step is likely to generate its own artifacts, quality checking can be time-consuming, and broadband data are only obtained late in this chained workflow. We have developed a unified method for broadband preprocessing — called integrated broadband preprocessing (IBP) — which enables the joint application of all the above listed steps early in the processing sequence. The amplitude, phase, and amplitude-variation-with-offset fidelity of IBP are demonstrated on pressure data from the shallow, deep, and slanted streamers. The integration allows greater sparsity to emerge in the representation of seismic data, conferring clear benefits over the sequential application. Moreover, time sparsity, full dimensionality, and early amplitude [Formula: see text] compensation all have an impact on broadband data quality, in terms of reduced ringing artifacts, improved wavelet integrity at large crossline angles, and fewer residual high-frequency multiples.


Geophysics ◽  
2014 ◽  
Vol 79 (4) ◽  
pp. R151-R163 ◽  
Author(s):  
Javad Rezaie ◽  
Jo Eidsvik ◽  
Tapan Mukerji

Information analysis can be used in the context of reservoir decisions under uncertainty to evaluate whether additional data (e.g., seismic data) are likely to be useful in impacting the decision. Such evaluation of geophysical information sources depends on input modeling assumptions. We studied results for Bayesian inversion and value of information analysis when the input distributions are skewed and non-Gaussian. Reservoir parameters and seismic amplitudes are often skewed and using models that capture the skewness of distributions, the input assumptions are less restrictive and the results are more reliable. We examined the general methodology for value of information analysis using closed skew normal (SN) distributions. As an example, we found a numerical case with porosity and saturation as reservoir variables and computed the value of information for seismic amplitude variation with offset intercept and gradient, all modeled with closed SN distributions. Sensitivity of the value of information analysis to skewness, mean values, accuracy, and correlation parameters is performed. Simulation results showed that fewer degrees of freedom in the reservoir model results in higher value of information, and seismic data are less valuable when seismic measurements are spatially correlated. In our test, the value of information was approximately eight times larger for a spatial-dependent reservoir variable compared with the independent case.


SPE Journal ◽  
2010 ◽  
Vol 15 (04) ◽  
pp. 1077-1088 ◽  
Author(s):  
F.. Sedighi ◽  
K.D.. D. Stephen

Summary Seismic history matching is the process of modifying a reservoir simulation model to reproduce the observed production data in addition to information gained through time-lapse (4D) seismic data. The search for good predictions requires that many models be generated, particularly if there is an interaction between the properties that we change and their effect on the misfit to observed data. In this paper, we introduce a method of improving search efficiency by estimating such interactions and partitioning the set of unknowns into noninteracting subspaces. We use regression analysis to identify the subspaces, which are then searched separately but simultaneously with an adapted version of the quasiglobal stochastic neighborhood algorithm. We have applied this approach to the Schiehallion field, located on the UK continental shelf. The field model, supplied by the operator, contains a large number of barriers that affect flow at different times during production, and their transmissibilities are highly uncertain. We find that we can successfully represent the misfit function as a second-order polynomial dependent on changes in barrier transmissibility. First, this enables us to identify the most important barriers, and, second, we can modify their transmissibilities efficiently by searching subgroups of the parameter space. Once the regression analysis has been performed, we reduce the number of models required to find a good match by an order of magnitude. By using 4D seismic data to condition saturation and pressure changes in history matching effectively, we have gained a greater insight into reservoir behavior and have been able to predict flow more accurately with an efficient inversion tool. We can now determine unswept areas and make better business decisions.


2020 ◽  
Author(s):  
Malin Waage ◽  
Stefan Bünz ◽  
Kate Waghorn ◽  
Sunny Singhorha ◽  
Pavel Serov

<p>The transition from gas hydrate to gas-bearing sediments at the base of the hydrate stability zone (BHSZ) is commonly identified on seismic data as a bottom-simulating reflection (BSR). At this boundary, phase transitions driven by thermal effects, pressure alternations, and gas and water flux exist. Sedimentation, erosion, subsidence, uplift, variations in bottom water temperature or heat flow cause changes in marine gas hydrate stability leading to expansion or reduction of gas hydrate accumulations and associated free gas accumulations. Pressure build-up in gas accumulations trapped beneath the hydrate layer may eventually lead to fracturing of hydrate-bearing sediments that enables advection of fluids into the hydrate layer and potentially seabed seepage. Depletion of gas along zones of weakness creates hydraulic gradients in the free gas zone where gas is forced to migrate along the lower hydrate boundary towards these weakness zones. However, due to lack of “real time” data, the magnitude and timescales of processes at the gas hydrate – gas contact zone remains largely unknown. Here we show results of high resolution 4D seismic surveys at a prominent Arctic gas hydrate accumulation – Vestnesa ridge - capturing dynamics of the gas hydrate and free gas accumulations over 5 years. The 4D time-lapse seismic method has the potential to identify and monitor fluid movement in the subsurface over certain time intervals. Although conventional 4D seismic has a long history of application to monitor fluid changes in petroleum reservoirs, high-resolution seismic data (20-300 Hz) as a tool for 4D fluid monitoring of natural geological processes has been recently identified.<br><br>Our 4D data set consists of four high-resolution P-Cable 3D seismic surveys acquired between 2012 and 2017 in the eastern segment of Vestnesa Ridge. Vestnesa Ridge has an active fluid and gas hydrate system in a contourite drift setting near the Knipovich Ridge offshore W-Svalbard. Large gas flares, ~800 m tall rise from seafloor pockmarks (~700 m diameter) at the ridge axis. Beneath the pockmarks, gas chimneys pierce the hydrate stability zone, and a strong, widespread BSR occurs at depth of 160-180 m bsf. 4D seismic datasets reveal changes in subsurface fluid distribution near the BHSZ on Vestnesa Ridge. In particular, the amplitude along the BSR reflection appears to change across surveys. Disappearance of bright reflections suggest that gas-rich fluids have escaped the free gas zone and possibly migrated into the hydrate stability zone and contributed to a gas hydrate accumulation, or alternatively, migrated laterally along the BSR. Appearance of bright reflection might also indicate lateral migration, ongoing microbial or thermogenic gas supply or be related to other phase transitions. We document that faults, chimneys and lithology constrain these anomalies imposing yet another control on vertical and lateral gas migration and accumulation. These time-lapse differences suggest that (1) we can resolve fluid changes on a year-year timescale in this natural seepage system using high-resolution P-Cable data and (2) that fluids accumulate at, migrate to and migrate from the BHSZ over the same time scale.</p>


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. C153-C162 ◽  
Author(s):  
Shibo Xu ◽  
Alexey Stovas ◽  
Hitoshi Mikada

Wavefield properties such as traveltime and relative geometric spreading (traveltime derivatives) are highly essential in seismic data processing and can be used in stacking, time-domain migration, and amplitude variation with offset analysis. Due to the complexity of an elastic orthorhombic (ORT) medium, analysis of these properties becomes reasonably difficult, where accurate explicit-form approximations are highly recommended. We have defined the shifted hyperbola form, Taylor series (TS), and the rational form (RF) approximations for P-wave traveltime and relative geometric spreading in an elastic ORT model. Because the parametric form expression for the P-wave vertical slowness in the derivation is too complicated, TS (expansion in offset) is applied to facilitate the derivation of approximate coefficients. The same approximation forms computed in the acoustic ORT model also are derived for comparison. In the numerical tests, three ORT models with parameters obtained from real data are used to test the accuracy of each approximation. The numerical examples yield results in which, apart from the error along the y-axis in ORT model 2 for the relative geometric spreading, the RF approximations all are very accurate for all of the tested models in practical applications.


2017 ◽  
Vol 36 (7) ◽  
pp. 588-597
Author(s):  
Sait Baytok ◽  
Burcu Selek ◽  
Hüseyin Özdemir

Sign in / Sign up

Export Citation Format

Share Document