The thickness imaging of channels using multiple-frequency components analysis

2019 ◽  
Vol 7 (1) ◽  
pp. B1-B8 ◽  
Author(s):  
Yan Ye ◽  
Bo Zhang ◽  
Cong Niu ◽  
Jie Qi ◽  
Huailai Zhou

Blending of different frequency components of seismic traces is a common way to estimate the relative time thickness of the formation. Red, blue, and green (RGB) color blending is one of the most popular blending models in analyzing multiple seismic attributes. Geologists and geophysicist interpreters typically associate low-frequency components (formations with the largest thickness value) with a red color, medium-frequency components (formations with a medium thickness value) with a green color, and high-frequency components (formations with the smallest thickness value) with a blue color for the thickness estimation of thin beds using frequency components. However, we found that the same result of RGB blending may come from different sets of three frequency components. As a result, the same blended color may correspond to several different time thicknesses. It is also very difficult to interpret the corresponding thickness of the blended colors such as white and yellow. To avoid the ambiguity of time-thickness estimation using RGB blending, we have estimated the time thickness of the thin beds using all of the frequency components in a user-defined frequency band instead of only three frequency components. Our workflow begins with the normal seismic spectral decomposition. Considering that the different reflectivity pairs with a different time thickness have a different amplitude spectrum, we then use the self-organizing map to cluster the decomposed amplitude spectra of seismic traces. We finally assign each cluster with a relative thickness by comparing the clustered results with well logs.

2010 ◽  
Vol 139-141 ◽  
pp. 2502-2505
Author(s):  
Bing Cheng Wang ◽  
Zhao Hui Ren

Simulated four different fault signals in the lab, the authors then used wavelet scalogram and amplitude spectrum to make analysis on the above four fault signals and abstract each spectrum characteristics. Wavelet scalogram was able to extract the characteristic’s frequency, show the impact components caused by rub-impact, show the beat phenomenon caused by oil whip and show the irreducible high frequency components as well as the complex low-frequency components. Amplitude spectrum was able to show the energy size distribution at various frequency bands and able to analyze and calculate the relationship between various frequency components. Thus they express the relationship between various frequency banks from a quantitative manner. Therefore, combining the wavelet scalogram and amplitude spectrum when making analysis, as they complement and verify each other, it will enhance the reliability when extract and analyze the characteristics of fault signal.


Author(s):  
Hui Ma ◽  
Wei Sun ◽  
Jishuang Dai ◽  
Bangchun Wen ◽  
Zongyan Wang

Focusing on pedestal looseness fault often occurring in practical engineering, a new looseness model is presented by considering respective advantages and disadvantages of all kinds of pedestal looseness model. By using finite element method, the looseness fault is simulated and the fault features are obtained. The simulation results show that when the amplitude of equivalent looseness mass is less than the looseness clearance, the system motion is from period-one through period-two to period-four, amplitudes of low frequency components gradually increase and the axis orbit changes from ellipse to twist with the decrease of looseness stiffness. When the amplitude of equivalent looseness mass is greater than the looseness clearance, high multiple frequency components and continuous spectra appear and axis orbit is similar to a trapezoid due to axis motion restrained by bilateral constraint. These fault features that obtained in different conditions are helpful to diagnose pedestal looseness fault in rotor system.


2015 ◽  
Author(s):  
T. Villa-Cañas ◽  
J. D. Arias-Londoño ◽  
J. R. Orozco-Arroyave ◽  
J. F. Vargas-Bonilla ◽  
Elmar Nöth

Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Author(s):  
В. М. Мойсишин ◽  
M. V. Lyskanych ◽  
R. A. Zhovniruk ◽  
Ye. P. Majkovych

The purpose of the proposed article is to establish the causes of oscillations of drilling tool and the basic laws of the distribution of the total energy of the process of changing the axial dynamic force over frequencies of spectrum. Variable factors during experiments on the classical plan were the rigidity of drilling tool and the hardness of the rock. According to the results of research, the main power of the process of change of axial dynamic force during drilling of three roller cone bits is in the frequency range 0-32 Hz in which three harmonic frequency components are allocated which correspond to the theoretical values of low-frequency and gear oscillations of the chisel and proper oscillations of the bit. The experimental values of frequencies of harmonic components of energy and normalized spectrum as well as the magnitude of the dispersion of the axial dynamic force and its normalized values at these frequencies are presented. It has been found that with decreasing rigidity of the drilling tool maximum energy of axial dynamic force moves from the low-frequency oscillation region to the tooth oscillation area, intensifying the process of rock destruction and, at the same time, protecting the tool from the harmful effects of the vibrations of the bit. Reducing the rigidity of the drilling tool protects the bit from the harmful effects of the vibrations generated by the stand. The energy reductions in these fluctuations range from 47 to 77%.


2019 ◽  
Vol 14 (7) ◽  
pp. 658-666
Author(s):  
Kai-jian Xia ◽  
Jian-qiang Wang ◽  
Jian Cai

Background: Lung cancer is one of the common malignant tumors. The successful diagnosis of lung cancer depends on the accuracy of the image obtained from medical imaging modalities. Objective: The fusion of CT and PET is combining the complimentary and redundant information both images and can increase the ease of perception. Since the existing fusion method sare not perfect enough, and the fusion effect remains to be improved, the paper proposes a novel method called adaptive PET/CT fusion for lung cancer in Piella framework. Methods: This algorithm firstly adopted the DTCWT to decompose the PET and CT images into different components, respectively. In accordance with the characteristics of low-frequency and high-frequency components and the features of PET and CT image, 5 membership functions are used as a combination method so as to determine the fusion weight for low-frequency components. In order to fuse different high-frequency components, we select the energy difference of decomposition coefficients as the match measure, and the local energy as the activity measure; in addition, the decision factor is also determined for the high-frequency components. Results: The proposed method is compared with some of the pixel-level spatial domain image fusion algorithms. The experimental results show that our proposed algorithm is feasible and effective. Conclusion: Our proposed algorithm can better retain and protrude the lesions edge information and the texture information of lesions in the image fusion.


Author(s):  
ZHAO Baiting ◽  
WANG Feng ◽  
JIA Xiaofen ◽  
GUO Yongcun ◽  
WANG Chengjun

Background:: Aiming at the problems of color distortion, low clarity and poor visibility of underwater image caused by complex underwater environment, a wavelet fusion method UIPWF for underwater image enhancement is proposed. Methods:: First of all, an improved NCB color balance method is designed to identify and cut the abnormal pixels, and balance the color of R, G and B channels by affine transformation. Then, the color correction map is converted to CIELab color space, and the L component is equalized with contrast limited adaptive histogram to obtain the brightness enhancement map. Finally, different fusion rules are designed for low-frequency and high-frequency components, the pixel level wavelet fusion of color balance image and brightness enhancement image is realized to improve the edge detail contrast on the basis of protecting the underwater image contour. Results:: The experiments demonstrate that compared with the existing underwater image processing methods, UIPWF is highly effective in the underwater image enhancement task, improves the objective indicators greatly, and produces visually pleasing enhancement images with clear edges and reasonable color information. Conclusion:: The UIPWF method can effectively mitigate the color distortion, improve the clarity and contrast, which is applicable for underwater image enhancement in different environments.


Author(s):  
Priya R. Kamath ◽  
Kedarnath Senapati ◽  
P. Jidesh

Speckles are inherent to SAR. They hide and undermine several relevant information contained in the SAR images. In this paper, a despeckling algorithm using the shrinkage of two-dimensional discrete orthonormal S-transform (2D-DOST) coefficients in the transform domain along with shock filter is proposed. Also, an attempt has been made as a post-processing step to preserve the edges and other details while removing the speckle. The proposed strategy involves decomposing the SAR image into low and high-frequency components and processing them separately. A shock filter is used to smooth out the small variations in low-frequency components, and the high-frequency components are treated with a shrinkage of 2D-DOST coefficients. The edges, for enhancement, are detected using a ratio-based edge detection algorithm. The proposed method is tested, verified, and compared with some well-known models on C-band and X-band SAR images. A detailed experimental analysis is illustrated.


2019 ◽  
Vol 16 (6) ◽  
pp. 1017-1031 ◽  
Author(s):  
Yong Hu ◽  
Liguo Han ◽  
Rushan Wu ◽  
Yongzhong Xu

Abstract Full Waveform Inversion (FWI) is based on the least squares algorithm to minimize the difference between the synthetic and observed data, which is a promising technique for high-resolution velocity inversion. However, the FWI method is characterized by strong model dependence, because the ultra-low-frequency components in the field seismic data are usually not available. In this work, to reduce the model dependence of the FWI method, we introduce a Weighted Local Correlation-phase based FWI method (WLCFWI), which emphasizes the correlation phase between the synthetic and observed data in the time-frequency domain. The local correlation-phase misfit function combines the advantages of phase and normalized correlation function, and has an enormous potential for reducing the model dependence and improving FWI results. Besides, in the correlation-phase misfit function, the amplitude information is treated as a weighting factor, which emphasizes the phase similarity between synthetic and observed data. Numerical examples and the analysis of the misfit function show that the WLCFWI method has a strong ability to reduce model dependence, even if the seismic data are devoid of low-frequency components and contain strong Gaussian noise.


2016 ◽  
Vol 32 (3) ◽  
pp. 297-311
Author(s):  
T.-Y. Zhao ◽  
H.-Q. Yuan ◽  
B.-B. Li ◽  
Z.-J. Li ◽  
L.-M. Liu

AbstractThe analysis method is developed to obtain dynamic characteristics of the rotating cantilever plate with thermal shock and tip-rub. Based on the variational principle, equations of motion are derived considering the differences between rubbing forces in the width direction of the plate. The transverse deformation is decomposed into quasi-static deformation of the cantilever plate with thermal shock and dynamic deformation of the rubbing plate under thermal shock. Then deformations are obtained through the calculation of modal characteristics of rotating cantilever plate and temperature distribution function. Special attention is paid to the influence of tip-rub and thermal shock on the plate. The results show that tip-rub has the characteristics of multiple frequency vibrations, and high frequency vibrations are significant. On the contrary, thermal shock shows the low frequency vibrations. The thermal shock makes the rubbing plate gradually change into low frequency vibrations. Because rub-induced vibrations are more complicated than those caused by thermal shock, tip-rub is easier to result in the destruction of the blade. The increasing friction coefficient intensifies vibrations of the rubbing plate. Minimizing friction coefficients can be an effective way to reduce rub-induced damage through reducing the surface roughness between the blade tip and the inner surface of the casing.


Sign in / Sign up

Export Citation Format

Share Document