Impacts of diagenesis of tight sandstone gas reservoir on reservoir physical properties: A case study, Sulige gas field, Ordos Basin, China

2019 ◽  
Vol 7 (3) ◽  
pp. T687-T699
Author(s):  
Shuwei Ma ◽  
Dazhong Ren ◽  
Lifa Zhou ◽  
Fengjuan Dong ◽  
Shi Shi ◽  
...  

Diagenesis is one of the most important factors impacting the performance of many reservoirs and is perhaps the most important factor impacting the performance of tight sandstone reservoirs, such as those of the Sulige gas field in the Ordos Basin of China. However, the relationship between diagenesis and related parameters determining reservoir physical properties remains unclear. Therefore, we have analyzed experimental data from high-pressure mercury intrusion porosimetry, scanning electron microscopy, and thin sections in addition to using a porosity recovery calculation model to investigate microscopic characteristics, diagenesis, and pore-evolution processes of the low-permeability tight gas reservoir of the He-8 unit of the Sulige gas field in the Ordos Basin. In addition, we have identified the impacts of diagenesis on reservoir characteristics and established the relationship between diagenesis and reservoir quality evolution. We also used the Beard primary porosity model to recover the primary porosity, and to built the reducing and enhancing calculation models for intergranular pore, dissolution pore, and intercrystalline pore during diagenesis. Based on the quantitative relationship between diagenesis processes and porosity evolution, we found that the results of simulation calculation and experimental works were in close agreement with minimal error.

2016 ◽  
Vol 57 (7) ◽  
pp. 1064-1077 ◽  
Author(s):  
Ding Xiaoqi ◽  
Yang Peng ◽  
Han Meimei ◽  
Chen Yang ◽  
Zhang Siyang ◽  
...  

Author(s):  
Zhaozhong Yang ◽  
Rui He ◽  
Xiaogang Li ◽  
Zhanling Li ◽  
Ziyuan Liu

The tight sandstone gas reservoir in southern Songliao Basin is naturally fractured and is characterized by its low porosity and permeability. Large-scale hydraulic fracturing is the most effective way to develop this tight gas reservoir. Quantitative evaluation of fracability is essential for optimizing a fracturing reservoir. In this study, as many as ten fracability-related factors, particularly mechanical brittleness, mineral brittleness, cohesion, internal friction angle, unconfined compressive strength (UCS), natural fracture, Model-I toughness, Model-II toughness, horizontal stress difference, and fracture barrier were obtained from a series of petrophysical and geomechanical experiments are analyzed. Taking these influencing factors into consideration, a modified comprehensive evaluation model is proposed based on the analytic hierarchy process (AHP). Both a transfer matrix and a fuzzy matrix were introduced into this model. The fracability evaluation of four reservoir intervals in Jinshan gas field was analyzed. Field fracturing tests were conducted to verify the efficiency and accuracy of the proposed evaluation model. Results showed that gas production is higher and more stable in the reservoir interval with better fracability. The field test data coincides with the results of the proposed evaluation model.


AAPG Bulletin ◽  
2020 ◽  
Vol 104 (11) ◽  
pp. 2429-2452
Author(s):  
Zongquan Hu ◽  
Herong Zheng ◽  
Wei Yin ◽  
Chunyan Liu ◽  
Chuanxiang Sun ◽  
...  

2012 ◽  
Vol 524-527 ◽  
pp. 81-84
Author(s):  
Qin Lian Wei ◽  
Ling Xiao

Reservoir plane heterogeneity means the geometry,the scale,the continuity and the plan variation of physical properties of reservoirs, which is one of the main factors influencing the injection-production in oil reservoirs. Therefore, the study of the reservoir plane heterogeneity play a great role in guiding development wells deployment,gas reservoir well nets adjustment and residual oil & gas development. The reservoir heterogeneity of the sandstone size of gas and the border, and unbalanced formation pressure because of the degree of the development of each well is uneven prevent ChangBei gas field to develoment. They cause difficulty of evaluating the gas field comprehensive,level development wells deployment and well trajectory adjustment,and lead to certain geology risk. It is necessary to study the reservoir heterogeneity of the number 2 of shanxi Formation in this block for concerning the unfavourable extraction condition. The composite index of reservoir plane heterogeneity of the number 2 of shanxi Formation in ChangBei gas field have calculated by adopting entropy method considering influcing reservoir plane heterogeneity which is porosity, tight sandstone, mutation coefficient and variation coefficient of permeability, range of permeability and interlayer frequency. The distributive maps of reservoir's plane heterogeneity under the restriction of sedimentary facies have also been drawed. The entropy method can full use of the reduction and strengthen of entropy method,which means the characteristic of removing the similarities and depositing differences. The study indicate that reservoir plane heterogeneity of the number 2 of shanxi Formation in study area presents the medium to slightly strong characteristics in general.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 470
Author(s):  
Yue Zhang ◽  
Jingchun Tian ◽  
Xiang Zhang ◽  
Jian Li ◽  
Qingshao Liang ◽  
...  

Diagenesis and pore evolution of tight sandstone reservoir is one of the most important issues surrounding clastic reservoirs. The tight sandstone of the Shanxi Formation is an important oil and gas producing layer of the Upper Paleozoic in Ordos Basin, and its densification process has an important impact on reservoir quality. This study determined the physical properties and diagenetic evolution of Shanxi Formation sandstones and quantitatively calculated the pore loss in the diagenetic process. Microscopic identification, cathodoluminescence, and a scanning electron microscope were used identify diagenesis, and the diagenesis evolution process was clarified along with inclusion analysis. In addition, reservoir quality was determined based on the identification of pore types and physical porosity. Results show that rock types are mainly sublitharenite and litharenite. The reservoir has numerous secondary pores after experiencing compaction, cementation, and dissolution. We obtained insight into the relationship between homogenous temperature and two hydrocarbon charges. The results indicated that there were two hydrocarbon charges in the Late Triassic–Early Jurassic (70–90 °C) and Middle Jurassic–Early Cretaceous (110–130 °C) before reservoir densification. The quantitative calculation of pore loss shows that the average apparent compaction, cementation, and dissolution rates are 67.36%, 22.24%, and 80.76%, respectively. Compaction directly affected the reservoir tightness, and intense dissolution was beneficial to improve the physical properties of the reservoir.


2020 ◽  
Vol 17 (4) ◽  
pp. 896-911
Author(s):  
Xiang-Dong Yin ◽  
Shu Jiang ◽  
Shi-Jia Chen ◽  
Peng Wu ◽  
Wei Gao ◽  
...  

2013 ◽  
Vol 295-298 ◽  
pp. 3328-3332
Author(s):  
Hai Ying Han ◽  
Zhi Zhang Wang ◽  
Xin Xiao Sun ◽  
Wei Jun Wang

Daniudi gas field is a tight sandstone gas field in the northeast of Ordos Basin. How to use the successful experience in developing area to predict favorable gas-rich area in other areas in this gas field is very important to the next exploration and development in this field. This paper proposes a multi-information integrated method to predict favorable gas-rich area. Firstly describe sedimentary microfacies by integrating seismic, logging and geological information; and then summarize and analyze the seismic reflection patterns of medium-high productivity wells; finally determine the favorable gas-rich area with the distribution of storage coefficient based on the previous analysis. The welltest of newly drilled wells shows that the coincidence rate of favorable gas-rich area predicted by this method could be up to 90%,and this method could be extended to use in the other tight sandstone gas reservoirs.


2021 ◽  
Vol 11 (8) ◽  
pp. 3301-3310
Author(s):  
Mingze Gong ◽  
Jinliang Zhang ◽  
Zhaoxun Yan ◽  
Jinkai Wang

AbstractSulige gas field has poor reservoir physical properties and strong heterogeneity. The existing development well pattern is difficult to realize the overall effective production of reserves, especially in block SuX. Therefore, this paper takes SuX block in the east of Sulige as an example to describe an effective method suitable for the development of well pattern in this area. Combined with logging and production data, the connectivity of gas wells in X infill area in the east of Sulige is determined from the aspects of pressure, sand body, logging, performance and well test. By using the method of dynamic and static analysis, the connectivity between wells of main gas reservoir is judged. Through the analysis of flow unit, the discharge area and the stable value of well-controlled reserves are determined. The degree of interference determined by curve fitting and the distribution characteristics of sand bodies are comprehensively analyzed. A new oil well interference degree model defined by mathematical expression of production is established. The interference degree is quantified by gas production through numerical simulation. Based on the comprehensive analysis of the connectivity, interference degree and other factors in the area, it is determined that 500 * 600 well pattern is a reasonable well pattern in SuX block, and the interference degree is about 20%. Based on the analysis of the connectivity between wells and the interference degree between production wells in SuX block, the distribution and connectivity of sand bodies in tight sandstone gas field under complex geological conditions are determined. It provides a reasonable basis for the network encryption development of tight sandstone gas in this block. It provides a powerful technical support for the efficient development of different tight gas reservoirs in Sulige area.


Sign in / Sign up

Export Citation Format

Share Document