scholarly journals Impact of rock type on the pore structures and physical properties within a tight sandstone reservoir in the Ordos Basin, NW China

2020 ◽  
Vol 17 (4) ◽  
pp. 896-911
Author(s):  
Xiang-Dong Yin ◽  
Shu Jiang ◽  
Shi-Jia Chen ◽  
Peng Wu ◽  
Wei Gao ◽  
...  
Author(s):  
Yubin Bai ◽  
Jingzhou Zhao ◽  
Delin Zhao ◽  
Hai Zhang ◽  
Yong Fu

AbstractThis study applied vacuum-impregnated casting thin sections, fluorescence slices, scanning electron microscopy (SEM), pressure-controlled mercury porosimetry (PCP), rate-controlled mercury porosimetry (RCP), X-ray diffraction of clay minerals, overburden pressure, and conventional physical property strategies to determine the microscopic characteristics of the Chang 6 member, a typical tight sandstone reservoir in the Jingbian oilfield in the Ordos Basin, China. We also analyzed the controlling effects of pore structure on reservoir quality and oiliness. The results showed that the pore types of the Chang 6 sandstone reservoir can be divided into four categories: residual intergranular pores, dissolution pores, intercrystalline pores between clay minerals, and microfractures. The pore size of the Chang 6 sandstone reservoir ranged from 20 to 50 μm. We employed PCP and RCP strategies to characterize the pore structure of the Chang 6 reservoir. The pore radius was less than 2 μm, and on average, the throat radius was less than 0.3 μm. The reservoir physical properties were affected by diagenesis, particularly compaction, and the average porosity failure rate was 56.3%. Cementation made the reservoir more compact, dissolution improved the physical properties of the reservoir locally, and fracturing effectively improved the reservoir seepage ability; however, its influence on porosity was limited. The pore structure controlled the quality of the reservoir. The physical properties of the reservoir were closely related to the oil-bearing properties. The lower limits of porosity and permeability of industrial oil flow in the reservoir were 7.5% and 0.15 mD, respectively. These results provide an additional resource for the exploration and development of tight oil in the Ordos Basin.


2019 ◽  
Vol 7 (3) ◽  
pp. T687-T699
Author(s):  
Shuwei Ma ◽  
Dazhong Ren ◽  
Lifa Zhou ◽  
Fengjuan Dong ◽  
Shi Shi ◽  
...  

Diagenesis is one of the most important factors impacting the performance of many reservoirs and is perhaps the most important factor impacting the performance of tight sandstone reservoirs, such as those of the Sulige gas field in the Ordos Basin of China. However, the relationship between diagenesis and related parameters determining reservoir physical properties remains unclear. Therefore, we have analyzed experimental data from high-pressure mercury intrusion porosimetry, scanning electron microscopy, and thin sections in addition to using a porosity recovery calculation model to investigate microscopic characteristics, diagenesis, and pore-evolution processes of the low-permeability tight gas reservoir of the He-8 unit of the Sulige gas field in the Ordos Basin. In addition, we have identified the impacts of diagenesis on reservoir characteristics and established the relationship between diagenesis and reservoir quality evolution. We also used the Beard primary porosity model to recover the primary porosity, and to built the reducing and enhancing calculation models for intergranular pore, dissolution pore, and intercrystalline pore during diagenesis. Based on the quantitative relationship between diagenesis processes and porosity evolution, we found that the results of simulation calculation and experimental works were in close agreement with minimal error.


2017 ◽  
Author(s):  
Fengyang Xiong ◽  
◽  
Zhenxue Jiang ◽  
Mohammad Amin Amooie ◽  
Mohamad Reza Soltanian ◽  
...  

2021 ◽  
pp. 014459872199851
Author(s):  
Yuyang Liu ◽  
Xiaowei Zhang ◽  
Junfeng Shi ◽  
Wei Guo ◽  
Lixia Kang ◽  
...  

As an important type of unconventional hydrocarbon, tight sandstone oil has great present and future resource potential. Reservoir quality evaluation is the basis of tight sandstone oil development. A comprehensive evaluation approach based on the gray correlation algorithm is established to effectively assess tight sandstone reservoir quality. Seven tight sandstone samples from the Chang 6 reservoir in the W area of the AS oilfield in the Ordos Basin are employed. First, the petrological and physical characteristics of the study area reservoir are briefly discussed through thin section observations, electron microscopy analysis, core physical property tests, and whole-rock and clay mineral content experiments. Second, the pore type, throat type and pore and throat combination characteristics are described from casting thin sections and scanning electron microscopy. Third, high-pressure mercury injection and nitrogen adsorption experiments are optimized to evaluate the characteristic parameters of pore throat distribution, micro- and nanopore throat frequency, permeability contribution and volume continuous distribution characteristics to quantitatively characterize the reservoir micro- and nanopores and throats. Then, the effective pore throat frequency specific gravity parameter of movable oil and the irreducible oil pore throat volume specific gravity parameter are introduced and combined with the reservoir physical properties, multipoint Brunauer-Emmett-Teller (BET) specific surface area, displacement pressure, maximum mercury saturation and mercury withdrawal efficiency parameters as the basic parameters for evaluation of tight sandstone reservoir quality. Finally, the weight coefficient of each parameter is calculated by the gray correlation method, and a reservoir comprehensive evaluation indicator (RCEI) is designed. The results show that the study area is dominated by types II and III tight sandstone reservoirs. In addition, the research method in this paper can be further extended to the evaluation of shale gas and other unconventional reservoirs after appropriate modification.


Sign in / Sign up

Export Citation Format

Share Document