The magneto-seismic method in geoscience

2021 ◽  
Vol 40 (3) ◽  
pp. 194-201
Author(s):  
Qiuzi Li ◽  
Harry W. Deckman ◽  
Deniz Ertaş ◽  
Lang Feng

Key concepts and potential applications associated with a phenomenon hitherto unexplored by the geoscience community, which we have named the magneto-seismic effect, are introduced. The method is based on the simple principle that when an electric charge moves in the presence of an external magnetic field, the charge carrier experiences an instantaneous force, which is equal to the vector cross product of the current it carries and the magnetic field that is present. This “Lorentz force” can create both compressional and shear sound waves in electrical conductors by passing an alternating current through them via an electromagnetic source. In laboratory settings, this magneto-seismic effect can produce readily detectable rock frame displacements. This opens up the possibility of developing new experimental methods to interrogate elastic and poroelastic response of rocks in a broad frequency range from subhertz to megahertz, potentially closing the frequency gap between traditional ultrasonic characterization and properties of interest in the seismic frequency band. In exploration settings, electric current dipole/bipole sources, or novel rotating magnetic dipole sources, can be used to generate electric currents at depth. These currents produce seismic waves at interfaces (or boundaries) where conductivity abruptly changes. The amplitude and propagation directions of these generated seismic waves depend on the relative orientation of the interfaces (or boundaries) with respect to the earth's magnetic field. These seismic waves can then be recorded by receivers at the surface and, in principle, might be processed to yield a resistivity map with seismic resolution. It is shown that processing to obtain a signal from deep targets is significantly limited by seismic background noise. However, an acceptable signal-to-noise ratio might be achieved for shallower targets. The difference between the magneto-seismic response and the previously well-studied electro-seismic response will be discussed.

2014 ◽  
Vol 580-583 ◽  
pp. 1723-1728
Author(s):  
Tai Yu Song ◽  
Yin Shen ◽  
Guo Ping Li

A radius of curvature 20 times greater than the deck width of the bridge (R≥20b) is required as a specification in the regular bridge simplification conditions of the seismic response of curved girder bridges. Selecting benchmark bridges and employing parameter analysis method, this article studies on the effect of R/B value of the curved girder bridge on the response ratio of the seismic response calculated using the finite element model and that using a regular girder bridge. This study shows that on conditions that the deck width of the bridge is constant, the smaller the radius of curvature and the larger the B/R value (i.e., the smaller the R/B value) of the curved girder bridge are, the greater the difference between the seismic response of the curved girder bridge and the result calculated with a regular girder bridge is, and the difference is more significant under traverse seismic effect than that of longitudinal seismic effect. On conditions that the radius of curvature is constant, the impact of the change of B/R value due to the deck width change of the bridge on the difference between the seismic response of the curved girder bridge and the result calculated with a regular girder bridge is insignificant. Compared with the deck width of the bridge, the difference between the seismic response of the curved girder bridge and the result calculated with a regular girder bridge is more sensitive to the radius of curvature.


2011 ◽  
Vol 287-290 ◽  
pp. 2916-2920
Author(s):  
Chun Yan Ban ◽  
Peng Qian ◽  
Xu Zhang ◽  
Qi Xian Ba ◽  
Jian Zhong Cui

The resistance of Al-21%Cu alloy under no magnetic field, DC magnetic field and AC magnetic field from liquid to solid was measured by a four-probe method. The difference of resistance versus temperature curves (R-T curves) was analyzed. It is found that the R-T curves of Al-21%Cu alloy are monotone decreasing and have two obvious turning points. Under DC magnetic field, the liquidus and solidus temperatures of the alloy both decrease, while under AC magnetic field, the liquidus and solidus temperatures both increase. There is a good agreement between the microstructure of quenching sample and R-T curves. The mechanism of the effect of magnetic fields was discussed.


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Bin Zhou ◽  
Bingjun Cheng ◽  
Xiaochen Gou ◽  
Lei Li ◽  
Yiteng Zhang ◽  
...  

Abstract The High Precision Magnetometer (HPM) is one of the main payloads onboard the China Seismo-Electromagnetic Satellite (CSES). The HPM consists of two Fluxgate Magnetometers (FGM) and the Coupled Dark State Magnetometer (CDSM), and measures the magnetic field from DC to 15 Hz. The FGMs measure the vector components of the magnetic field; while the CDSM detects the magnitude of the magnetic field with higher accuracy, which can be used to calibrate the linear parameters of the FGM. In this paper, brief descriptions of measurement principles and performances of the HPM, ground, and in-orbit calibration results of the FGMs are presented, including the thermal drift and magnetic interferences from the satellite. The HPM in-orbit vector data calibration includes two steps: sensor non-linearity corrections based on on-ground calibration and fluxgate linear parameter calibration based on the CDSM measurements. The calibration results show a reasonably good stability of the linear parameters over time. The difference between the field magnitude calculated from the calibrated FGM components and the magnitude directly measured by the CDSM is just 0.5 nT (1σ) when the linear parameters are fitted separately for the day- and the night-side. Satellite disturbances have been analyzed including soft and hard remanence as well as magnetization of the magnetic torquer, radiation from the Tri-Band Beacon, and interferences from the rotation of the solar wing. A comparison shows consistency between the HPM and SWARM magnetic field data. Observation examples are introduced in the paper, which show that HPM data can be used to survey the global geomagnetic field and monitor the magnetic field disturbances in the ionosphere.


2006 ◽  
Vol 512 ◽  
pp. 195-200 ◽  
Author(s):  
Nariaki Okamoto ◽  
Takashi Fukuda ◽  
Tomoyuki Kakeshita ◽  
Tetsuya Takeuchi

Ni2MnGa alloy with 10M martensite exhibits rearrangement of martensite variants (RMV) by magnetic field, but Ni2.14Mn0.92Ga0.94 with 2M martensite does not. In order to explain the difference, we measured uniaxial magnetocrystalline anisotropy constant Ku and the stress required for twinning plane movement τreq in these alloys. Concerning the former alloy, the maximum value of magnetic shear stress acting across twinning plane τmag, which is evaluated as |Ku| divided by twinning shear, becomes larger than τr eq. On the other hand, concerning the latter alloy, the maximum of τmag is only one-tenth of τreq at any temperature examined. Obviously, the relation, τmag> τr eq, is satisfied when RMV occurs by magnetic field and vice versa. In this martensite, the large twinning shear of 2M martensite is responsible for small τmag and large τreq.


1945 ◽  
Vol 18 (1) ◽  
pp. 8-9 ◽  
Author(s):  
Eugénie Cotton-Feytis

Abstract From the standpoint of its magnetic anisotropy, stretched rubber is comparable in a first approximation to a uniaxial crystal, in which the direction of the axis is the same as the direction of elongation. It is possible to measure this anisotropy by means of the oscillation method used by Krishnan, Guha and Banerjee in studying crystals. The sample to be examined is suspended in a uniform horizontal magnetic field in such a manner that its axis is horizontal. It is then so arranged that the torsion of the suspension wire is zero when the rubber sample is in a position of equilibrium in the field. The times of oscillation T′ and T for very small angular displacements around this position, in the presence and then in the absence of the magnetic field, are then recorded. In this way the difference between the specific susceptibilities in the direction of the axis and in the horizontal direction perpendicular to the axis is calculated by application of the equation:


2016 ◽  
Vol 62 (11) ◽  
pp. 944-952 ◽  
Author(s):  
Lotfi Mhamdi ◽  
Nejib Mhamdi ◽  
Naceur Mhamdi ◽  
Philippe Lejeune ◽  
Nicole Jaffrezic ◽  
...  

This preliminary study focused on the effect of exposure to 0.5 T static magnetic fields on Escherichia coli adhesion and orientation. We investigated the difference in bacterial adhesion on the surface of glass and indium tin oxide-coated glass when exposed to a magnetic field either perpendicular or parallel to the adhesion surface (vectors of magnetic induction are perpendicular or parallel to the adhesion surface, respectively). Control cultures were simultaneously grown under identical conditions but without exposure to the magnetic field. We observed a decrease in cell adhesion after exposure to the magnetic field. Orientation of bacteria cells was affected after exposure to a parallel magnetic field. On the other hand, no effect on the orientation of bacteria cells was observed after exposure to a perpendicular magnetic field.


Soft Matter ◽  
2021 ◽  
Author(s):  
Xiaocheng Hu ◽  
Yimou Fu ◽  
Tonghao Wu ◽  
Shaoxing Qu

The magneto-active polymers (MAPs) can undergo rapid and noticeable deformation through the external wireless magnetic stimulation, offering a possibility to develop potential applications such as actuators, flexible micro-grippers, soft robots,...


1976 ◽  
Vol 66 (6) ◽  
pp. 1887-1904
Author(s):  
J. F. Evernden ◽  
W. M. Kohler

abstract A possibly significant factor in application of an identification criterion such as MS:mb is systematic bias in mb magnitude estimates at small magnitudes due to a variety of factors. Magnitude bias is the difference in magnitude value, positive or negative, between an observed network-based magnitude value and the expected magnitude value if all stations of the network had detected the event at high signal-to-noise ratio. This paper constitutes a partial study of the general problem; it evaluates the bias effects expected from both conceptual and operational networks when using parameters for noise and signal levels and standard deviations derived from observations, and when correcting observed station mb values solely via a simple parameter station correction factor. The analysis shows that any bias effects on mb inherent in any operational or potential worldwide network are so small as to have negligible effect on use of an MS:mb discriminant.


Author(s):  
Yumeng Liang ◽  
Anfu Zhou ◽  
Huanhuan Zhang ◽  
Xinzhe Wen ◽  
Huadong Ma

Contact-less liquid identification via wireless sensing has diverse potential applications in our daily life, such as identifying alcohol content in liquids, distinguishing spoiled and fresh milk, and even detecting water contamination. Recent works have verified the feasibility of utilizing mmWave radar to perform coarse-grained material identification, e.g., discriminating liquid and carpet. However, they do not fully exploit the sensing limits of mmWave in terms of fine-grained material classification. In this paper, we propose FG-LiquID, an accurate and robust system for fine-grained liquid identification. To achieve the desired fine granularity, FG-LiquID first focuses on the small but informative region of the mmWave spectrum, so as to extract the most discriminative features of liquids. Then we design a novel neural network, which uncovers and leverages the hidden signal patterns across multiple antennas on mmWave sensors. In this way, FG-LiquID learns to calibrate signals and finally eliminate the adverse effect of location interference caused by minor displacement/rotation of the liquid container, which ensures robust identification towards daily usage scenarios. Extensive experimental results using a custom-build prototype demonstrate that FG-LiquID can accurately distinguish 30 different liquids with an average accuracy of 97%, under 5 different scenarios. More importantly, it can discriminate quite similar liquids, such as liquors with the difference of only 1% alcohol concentration by volume.


2018 ◽  
Vol 86 (1) ◽  
Author(s):  
Xingji Li ◽  
Zhilong Peng ◽  
Yazheng Yang ◽  
Shaohua Chen

Bio-inspired functional surfaces attract many research interests due to the promising applications. In this paper, tunable adhesion of a bio-inspired micropillar arrayed surface actuated by a magnetic field is investigated theoretically in order to disclose the mechanical mechanism of changeable adhesion and the influencing factors. Each polydimethylsiloxane (PDMS) micropillar reinforced by uniformly distributed magnetic particles is assumed to be a cantilever beam. The beam's large elastic deformation is obtained under an externally magnetic field. Specially, the rotation angle of the pillar's end is predicted, which shows an essential effect on the changeable adhesion of the micropillar arrayed surface. The larger the strength of the applied magnetic field, the larger the rotation angle of the pillar's end will be, yielding a decreasing adhesion force of the micropillar arrayed surface. The difference of adhesion force tuned by the applied magnetic field can be a few orders of magnitude, which leads to controllable adhesion of such a micropillar arrayed surface. Influences of each pillar's cross section shape, size, intervals between neighboring pillars, and the distribution pattern on the adhesion force are further analyzed. The theoretical predictions are qualitatively well consistent with the experimental measurements. The present theoretical results should be helpful not only for the understanding of mechanical mechanism of tunable adhesion of micropillar arrayed surface under a magnetic field but also for further precise and optimal design of such an adhesion-controllable bio-inspired surface in future practical applications.


Sign in / Sign up

Export Citation Format

Share Document